
Operating the robot with feedback from 
sensors (PID control) 

Without feedback the robot is limited to using timing to determine if it's gone far enough, 

turned enough, or is going fast enough. And for mechanisms, without feedback it's almost 

impossible to get arms at the right angle, elevators at the right height, or shooters to the right 

speed. There are a number of ways of getting these mechanisms to operate in a predictable 

way. The most common is using PID (Proportional, Integral, and Differential) control. The basic 

idea is that you have a sensor like a potentiometer or encoder that can measure the variable 

you're trying to control with a motor. In the case of an arm you might want to control the angle 

- so you use a potentiometer to measure the angle. The potentiometer is an analog device, it 

returns a voltage that is proportional to the shaft angle of the arm. 

To move the arm to a preset position, say for scoring, you predetermine what the 

potentiometer voltage should be at that preset point, then read the arms current angle 

(voltage). The different between the current value and the desired value represents how far 

the arm needs to move and is called the error. The idea is to run the motor in a direction that 

reduces the error, either clockwise or counterclockwise. And the amount of error (distance 

from your setpoint) determines how fast the arm should move. As it gets closer to the 

setpoint, it slows down and finally stops moving when the error is near zero. 

The WPILib PIDController class is designed to accept the sensor values and output motor 

values. Then given a setpoint, it generates a motor speed that is appropriate for its calculated 

error value. 

Operating the robot with feedback from sensors (PID control)

Page 1Operating the robot with feedback from sensors (PID control) Last Updated: 11-27-2023



Creating a PIDController object 

The PIDController class allows for a PID control loop to be created easily, and runs the control 
loop in a separate thread at consistent intervals. The PIDController automatically checks a 
PIDSource for feedback and writes to a PIDOutput every loop. Sensors suitable for use with 
PIDController in WPILib are already subclasses of PIDSource. Additional sensors and custom 
feedback methods are supported through creating new subclasses of PIDSource. Jaguars and 
Victors are already configured as subclasses of PIDOutput, and custom outputs may also be 
created by sub-classing PIDOutput. 

A potentiometer that turns with the turret will provide feedback of the turret angle. The 
potentiometer is connected to an analog input and will return values ranging from 0-5V from full 
clockwise to full counterclockwise motion of the turret. The joystick X-axis returns values from -1.0 
to 1.0 for full left to full right. We need to scale the joystick values to match the 0-5V values from 
the potentiometer. This is done with the expression (1). The scaled value can then be used to 
change the setpoint of the control loop as the joystick is moved. 

The 0.1, 0.001, and 0.0 values are the Proportional, Integral, and Differential coefficients 
respectively. The AnalogChannel object is already a subclass of PIDSource and returns the 
voltage as the control value and the Jaguar object is a subclass of PIDOutput. 

The PIDController object will automatically (in the background): 

• Read the PIDSource object (in this case the turretPot analog input) 
• Compute the new result value 
• Set the PIDOutput object (in this case the turretMotor) 

Operating the robot with feedback from sensors (PID control)

Page 2Operating the robot with feedback from sensors (PID control) Last Updated: 11-27-2023



This will be repeated periodically in the background by the PIDController. The default repeat rate 
is 50ms although this can be changed by adding a parameter with the time to the end of the 
PIDController argument list. See the reference document for details. 

Setting the P, I, and D values 

The output value is computed by adding the weighted values of the error (proportional term), the 
sum of the errors (integral term) and the rate of change of errors (differential term). Each of these 
is multiplied by a scaling constant, the P, I and D values before adding the terms together. The 
constants allow the PID controller to be tuned so that each term is contributing an appropriate 
value to the final output. 

The P, I, and D values are set in the constructor for the PIDController object as parameters. 

The SmartDashboard in Test mode has support for helping you tune PID controllers by displaying 
a form where you can enter new P, I, and D constants and test the mechanism. 

Continuous sensors like continuous rotation potentiometers 

The PIDController object can also handle continuous rotation potentiometers as input devices. 
When the pot turns through the end of the range the values go from 5V to 0V instantly. The PID 
controller method SetContinuous() will set the PID controller to a mode where it will computer the 
shortest distance to the desired value which might be through the 5V to 0V transition. This is very 
useful for drive trains that use have continuously rotating swerve wheels where moving from 359 
degrees to 10 degrees should only be a 11 degree motion, not 349 degrees in the opposite 
direction. 

Controlling the speed of a motor 

Controlling motor speed is a a little different then position control. Remember, with position 
control you are setting the motor value to something related to the error. As the error goes to zero 
the motor stops running. If the sensor (an optical encoder for example) is measuring motor speed 
as the speed reaches the setpoint, the error goes to zero, and the motor slows down. This causes 
the motor to oscillate as it constantly turns on and off. What is needed is a base value of motor 
speed called the "Feed forward" term. This 4th value, F, is added in to the output motor voltage 
independently of the P, I, and D calculations and is a base speed the motor will run at. The P, I, and 

Operating the robot with feedback from sensors (PID control)

Page 3Operating the robot with feedback from sensors (PID control) Last Updated: 11-27-2023

https://wpilib.screenstepslive.com/s/3120/m/7932/l/81113-pid-tuning-with-smartdashboard


D values adjust the feed forward term (base motor speed) rather than directly control it. The closer 
the feed forward term is, the smoother the motor will operate. 

Note: The feedfoward term is multiplied by the setpoint for the PID controller so that it 
scales with the desired output speed. 

Using PID controllers in command based robot programs 

The easiest way to use PID controllers with command based robot programs is by implementing 
PIDSubsystems for all your robot mechanisms. This is simply a subsystem with a PIDController 
object built-in and provides a number of convenience methods to access the required PID 
parameters. In a command based program, typically commands would provide the setpoint for 
different operations, like moving an elevator to the low, medium or high position. In this case, the 
isFinished() method of the command would check to see if the embedded PIDController had 
reached the target. See the Command based programming section for more information and 
examples. 

Operating the robot with feedback from sensors (PID control)

Page 4Operating the robot with feedback from sensors (PID control) Last Updated: 11-27-2023

https://wpilib.screenstepslive.com/s/3120/m/7952

	Creating a PIDController object
	Setting the P, I, and D values
	Continuous sensors like continuous rotation potentiometers
	Controlling the speed of a motor
	Using PID controllers in command based robot programs

