
Gyros to control robot driving direction

Gyros typically in the FIRST kit of parts are provided by Analog Devices, and are actually

angular rate sensors. The output voltage is proportional to the rate of rotation of the axis

perpendicular to the top package surface of the gyro chip. The value is expressed in

mV/°/second (degrees/second or rotation expressed as a voltage). By integrating (summing)

the rate output over time, the system can derive the relative heading of the robot.

Another important specification for the gyro is its full-scale range. Gyros with high full-scale

ranges can measure fast rotation without “pinning” the output. The scale is much larger so

faster rotation rates can be read, but there is less resolution due to a much larger range of

values spread over the same number of bits of digital to analog input. In selecting a gyro, you

would ideally pick the one that had a full-scale range that matched the fastest rate of rotation

your robot would experience. This would yield the highest accuracy possible, provided the

robot never exceeded that range.

Using the Gyro class

The Gyro object should be created in the constructor of the RobotBase derived object. When the
Gyro object is used, it will go through a calibration period to measure the offset of the rate output

Gyros to control robot driving direction

Page 1Gyros to control robot driving direction Last Updated: 12-06-2023

while the robot is at rest to minimize drift. This requires that the robot be stationary and the gyro
is unusable until the calibration is complete.

Once initialized, the GetAngle() (or getAngle() in Java) method of the Gyro object will return the
number of degrees of rotation (heading) as a positive or negative number relative to the robot’s
position during the calibration period. The zero heading can be reset at any time by calling the
Reset() (reset() in Java) method on the Gyro object.

See the code samples below for an idea of how to use the Gyro objects.

Setting Gyro sensitivity

The Gyro class defaults to the settings required for the 250°/sec gyro that was delivered by FIRST in
the 2012-2014 Kit of Parts (ADW22307). It is important to check the documentation included with
the gyro to ensure that you have the correct sensitivity setting.

To change gyro types call the SetSensitivity(float sensitivity) method (or setSensitivity(double
sensitivity) in Java) and pass it the sensitivity in volts/°/sec. Take note that the units are typically
specified in mV (volts / 1000) in the spec sheets. For example, a sensitivity of 12.5 mV/°/sec would
require a SetSensitivity() (setSensitivity() in Java) parameter value of 0.0125.

Using a gyro to drive straight

The following example programs cause the robot to drive in a straight line using the gyro sensor in
combination with the RobotDrive class. The RobotDrive.Drive method takes the speed and the
turn rate as arguments; where both vary from -1.0 to 1.0. The gyro returns a value indicating the
number of degrees positive or negative the robot deviated from its initial heading. As long as the
robot continues to go straight, the heading will be zero. This example uses the gyro to keep the
robot on course by modifying the turn parameter of the Drive method.

The angle is multiplied by a proportional scaling constant (Kp) to scale it for the speed of the robot
drive. This factor is called the proportional constant or loop gain. Increasing Kp will cause the robot
to correct more quickly (but too high and it will oscillate). Decreasing the value will cause the robot
correct more slowly (possibly never reaching the desired heading). This is known as proportional
control, and is discussed further in the PID control section of the advanced programming section.

Gyros to control robot driving direction

Page 2Gyros to control robot driving direction Last Updated: 12-06-2023

Sample Java program for driving straight

This is a sample Java program that drives in a straight line. See the comments in the C++ example
(previous step) for an explanation of its operation.

package edu.wpi.first.wpilibj.templates;
import edu.wpi.first.wpilibj.Gyro;
import edu.wpi.first.wpilibj.RobotDrive;
import edu.wpi.first.wpilibj.SimpleRobot;
import edu.wpi.first.wpilibj.Timer;
public class GyroSample extends SimpleRobot {

 \ private RobotDrive myRobot; // robot drive system
 private Gyro gyro;

 \ double Kp = 0.03;

 public GyroSample() {

Gyros to control robot driving direction

Page 3Gyros to control robot driving direction Last Updated: 12-06-2023

 gyro = new Gyro(1); \ // Gyro on Analog Channel 1
 myRobot = new RobotDrive(1,2); \ // Drive train jaguars on PWM 1 and 2
 myRobot.setExpiration(0.1);
 \ }

 public void autonomous() {
 gyro.reset();
 while (isAutonomous()) {
 double angle = gyro.getAngle(); // get current heading
 myRobot.drive(-1.0, -angle*Kp); // drive towards heading 0
 Timer.delay(0.004);
 }
 myRobot.drive(0.0, 0.0);
 \ }
}

Thanks to Joe Ross from FRC team 330 for help with this example.

Gyros to control robot driving direction

Page 4Gyros to control robot driving direction Last Updated: 12-06-2023

	Using the Gyro class
	Setting Gyro sensitivity
	Using a gyro to drive straight
	Sample Java program for driving straight

