
VISION PROCESSING

Last Updated: 08-08-2019

Table of Contents

2014 Vision Processing ...3
Target Info and Retroreflection ..4

Camera Settings ...9

Identifying and Processing the Targets .. 15

Calibration ... 23

LabVIEW Code ... 33

C++/Java Code ... 45

Axis M1013 Camera Compatibility .. 55

Vision Processing

2014 Vision Processing

Vision Processing

Page 3Vision Processing Last Updated: 08-08-2019

Target Info and Retroreflection

This document describes the Vision Targets from the 2014 FRC game and the visual properties
of the material making up the targets. Note that for official dimensions and drawings of all
field components, please see the Official Field Drawings

Vertical Targets

The Vertical Vision Target consists of 4" wide, 32" tall stripe of retroreflective material (3M 8830
Silver Marking Film) bordered by 2in. wide black gaffers tape on the left and right sides. The
Vertical Targets are located behind the polycarbonate (above the low goal) and acrylic (in front of
the Player Station) sheets above the inside edge of each Low Goal, approximately 37.5" above the
carpet. When properly lit, the retroreflective tape produces a bright and/or color-saturated
marker.

Vision Processing

Page 4Vision Processing Last Updated: 08-08-2019

http://frc-manual.usfirst.org/

Horizontal Targets

The Horizontal Target consists of a 23.5" long, 4" tall stripe of retroreflective material bordered on
all sides by a 2" black ABS plastic frame. The Horizontal Targets are centered above the Low Goal,
behind the polycarbonate sheet. The reflective material begins 68" above the carpet.

Horizontal Target Behavior

The Horizontal Target is a dynamic field element which is actuated during autonomous to indicate
whether the corresponding High and Low goals are Hot or not. Before the match starts, both
targets will have the reflective material showing out towards the field.

• When the match starts, one target will actuate to point the reflective material upwards, hiding it
from view. The target which flips first will be randomly selected, but will always be the same for
both alliances form the robot perspective. This means that the targets active at the same time
will be located diagonally across the field from each other. The goal which has the reflective
material showing is the Hot goal.

Vision Processing

Page 5Vision Processing Last Updated: 08-08-2019

• Halfway through the autonomous period both targets will flip their state indicating that the
other goal is now Hot.

• At the end of the autonomous period both targets will return to showing the material. The
targets will remain in this state (both showing) for the duration of the Teleoperated period.

The targets are actuated by an electric solenoid and have state transition times of ~?.? seconds.

Retroreflectivity vs. Reflectivity

Retroreflectivity vs. Reflectivity

Highly reflective materials are generally mirrored so that light “bounces off” at a supplementary
angle. As shown above-left, the blue and red angles sum to 180 degrees. An equivalent
explanation is that the light reflects about the surface normal the green line drawn perpendicular
to the surface. Notice that a light pointed at the surface will return to the light source only if the
blue angle is ~90 degrees.

Retro-reflective materials are not mirrored, but it will typically have either shiny facets across the
surface, or it will have a pearl-like appearance. Not all faceted or pearl-like materials are retro-
reflective, however. Retro-reflective materials return the majority of light back to the light source,
and they do this for a wide range of angles between the surface and the light source, not just the
90 degree case. Retro-reflective materials accomplish this using small prisms, such as found on a
bicycle or roadside reflector, or by using small spheres with the appropriate index of refraction
that accomplish multiple internal reflections. In nature, the eyes of some animals, including house
cats, also exhibit the retro-reflective effect typically referred to as night-shine. The Wikipedia
articles on retro-reflection go into more detail on how retro-reflection is accomplished.

Examples of Retroreflection

Examples of Retroreflection

This material should be relatively familiar as it is often used to enhance nighttime visibility of road
signs, bicycles, and pedestrians.

Initially, retro-reflection may not seem like a useful property for nighttime safety, but when the
light and eye are near one another, as shown below, the reflected light returns to the eye, and the
material shines brightly even at large distances. Due to the small angle between the driver’s eyes

Vision Processing

Page 6Vision Processing Last Updated: 08-08-2019

and vehicle headlights, retro-reflective materials can greatly increase visibility of distant objects
during nighttime driving.

Demonstration
To further explore retro-reflective material properties:

1. Place a piece of the material on a wall or vertical surface
2. Stand 10-20 feet away, and shine a small flashlight at the material.
3. Start with the light held at your belly button, and raise it slowly until it is between your eyes. As

the light nears your eyes, the intensity of the returned light will increase rapidly.
4. Alter the angle by moving to other locations in the room and repeating. The bright reflection

should occur over a wide range of viewing angles, but the angle from light source to eye is key
and must be quite small.

Experiment with different light sources. The material is hundreds of times more reflective than
white paint; so dim light sources will work fine. For example, a red bicycle safety light will
demonstrate that the color of the light source determines the color of the reflected light. If
possible, position several team members at different locations, each with their own light source.
This will show that the effects are largely independent, and the material can simultaneously
appear different colors to various team members. This also demonstrates that the material is
largely immune to environmental lighting. The light returning to the viewer is almost entirely
determined by a light source they control or one directly behind them. Using the flashlight, identify
other retro-reflective articles already in your environment … on clothing, backpacks, shoes, etc.

Lighting

Lighting

We have seen that the retro-reflective tape will not shine unless a light source is directed at it, and
the light source must pass very near the camera lens or the observer’s eyes. While there are a
number of ways to accomplish this, a very useful type of light source to investigate is the ring flash,
or ring light, shown above. It places the light source directly on or around the camera lens and
provides very even lighting. Because of their bright output and small size, LEDs are particularly
useful for constructing this type of device.

As shown above, inexpensive circular arrangements of LEDs are available in a variety of colors and
sizes and are easy to attach to the Axis cameras. While not designed for diffuse even lighting, they

Vision Processing

Page 7Vision Processing Last Updated: 08-08-2019

work quite well for causing retro-reflective tape to shine. A small green LED ring is available
through FIRST Choice. Other similar LED rings are available from the supplier,
SuperBrightLEDs.com

More Information
For more information on retroreflection including types of retroreflective materials, how
retroreflective performance is characterized, and information on the 3M 8830 Silver Marking Film
used on the 2014 field, see the documents linked from this page.

Sample Images
Sample Images are packaged with the examples for each language. The locations are described in
the LabVIEW Code and C++/Java Code articles. The images included with the examples do not have
the yellow LEDs lit on the goal above the target. Some images with the LEDs lit have been
uploaded here: http://firstforge.wpi.edu/sf/frs/do/viewRelease/projects.wpilib/
frs.2014_vision_images.2014_vision_images_supplement

Vision Processing

Page 8Vision Processing Last Updated: 08-08-2019

https://firstchoicebyandymark.com/en/fc14-060
http://www.superbrightleds.com/cat/led-headlight-accent-lights/
http://www.usfirst.org/roboticsprograms/frc/2014-Programming
../../8731/l/91388?data-resolve-url=true&data-manual-id=8731
../../8731/l/91395?data-resolve-url=true&data-manual-id=8731
http://firstforge.wpi.edu/sf/frs/do/viewRelease/projects.wpilib/frs.2014_vision_images.2014_vision_images_supplement
http://firstforge.wpi.edu/sf/frs/do/viewRelease/projects.wpilib/frs.2014_vision_images.2014_vision_images_supplement

Camera Settings

It is very difficult to achieve good image processing results without good images. With a light
mounted near the camera lens, you should be able to use the provided examples, the
dashboard or SmartDashboard, NI Vision Assistant or a web browser to view camera images
and experiment with camera settings.

Changing Camera Settings

To change the camera settings on any of the supported Axis cameras (206, M1011, M1013),
browse to the camera's webpage by entering it's address (usually 10.TE.AM.11) in a web browser.
Click Setup near the top right corner of the page. On the M1013, the settings listed below are split
between the Video Stream page and the Camera Settings page, both listed under the Video
section.

Vision Processing

Page 9Vision Processing Last Updated: 08-08-2019

Focus
The Axis M1011 has a fixed-focus lens and no adjustment is needed. The Axis 206 camera has a
black bezel around the lens that rotates to move the lens in and out and adjust focus. The Axis
M103 has a silver and black bezel assembly around the lens to adjust the focus. Ensure that the
images you are processing are relatively sharp and focused for the distances needed on your
robot.

Compression

The Axis camera returns images in BMP, JPEG, or MJPG format. BMP images are quite large and
take more time to transmit to the cRIO and laptop. Therefore the WPILib implementations typically
use MJPG motion JPEG. The compression setting ranges form 0 to 100, with 0 being very high
quality images with very little compression, and 100 being very low quality images with very high
compression. The camera default is 30, and it is a good compromise, with few artifacts that will
degrade image processing. Due to implementation details within the VxWorks memory manager,
you may notice a performance benefit if you keep the image sizes consistently below 16 kBytes.

Vision Processing

Page 10Vision Processing Last Updated: 08-08-2019

Teams are advised to consider how the compression setting on the camera affects
bandwidth if performing processing on the Driver Station computer, see the FMS Whitepaper
for more details.

Resolution

Image sizes shared by the supported cameras are 160x120, 320x240, and 640x480. The M1011
and 1013 have additional sizes, but they aren’t built into WPILib. The largest image size has four
times as many pixels that are one-fourth the size of the middle size image. The large image has
sixteen times as many pixels as the small image.

The tape used on the target is 4 inches wide, and for good processing, you will want that 4 inch
feature to be at least two pixels wide. Using the distance equations above, we can see that a
medium size image should be fine up to the point where the field of view is around 640 inches, a
little over 53 feet, which is nearly double the width of the FRC field. This occurs at around 60 feet
away, longer than the length of the field. The small image size should be usable for processing to a
distance of about 30 feet or a little over mid-field.

Image size also impacts the time to decode and to process. Smaller images will be roughly four
times faster than the next size up. If the robot or target is moving, it is quite important to minimize
image processing time since this will add to the delay between the target location and perceived
location. If both robot and target are stationary, processing time is typically less important.

Note: When requesting images using LabVIEW (either the Dashboard or Robot Code), the
resolution and Frame Rate settings of the camera will be ignored. The LabVIEW code specifies the
framerate and resolution as part of the stream request (this does not change the settings stored in
the camera, it overrides that setting for the specific stream). The SmartDashboard and robot code
in C++ or Java will use the resolution and framerate stored in the camera.

Vision Processing

Page 11Vision Processing Last Updated: 08-08-2019

http://www.usfirst.org/sites/default/files/uploadedFiles/Robotics_Programs/FRC/Game_and_Season__Info/2013/FMSWhitePaper_RevA.pdf

Frame Rate

The Axis Cameras have a max framerate of 30 frames per second. If desired, a limit can be set
lower to reduce bandwidth consumption.

Color Enable
The Axis cameras typically return color images, but are capable of disabling color and returning a
monochrome or grayscale image. The resulting image is a bit smaller in file size, and considerably
quicker to decode. If processing is carried out only on the brightness or luminance of the image,
and the color of the ring light is not used, this may be a useful technique for increasing the frame
rate or lowering the CPU usage.

White Balance

If the color of the light shine is being used to identify the marker, be sure to control the camera
settings that affect the image coloring. The most important setting is white balance. It controls how
the camera blends the component colors of the sensor in order to produce an image that matches
the color processing of the human brain. The camera has five or six named presets, an auto
setting that constantly adapts to the environment, and a hold setting -- for custom calibration.

The easiest approach is to use a named preset, one that maintains the saturation of the target and
doesn’t introduce problems by tinting neutral objects with the color of the light source.

Vision Processing

Page 12Vision Processing Last Updated: 08-08-2019

To custom-calibrate the white balance, place a known neutral object in front of the camera. A
sheet of white paper is a reasonable object to start with. Set the white balance setting to auto, wait
for the camera to update its filters (ten seconds or so), and switch the white balance to hold.

Exposure

The brightness or exposure of the image also has an impact on the colors being reported. The
issue is that as overall brightness increases, color saturation will start to drop. Lets look at an
example to see how this occurs. A saturated red object placed in front of the camera will return an
RGB measurement high in red and low in the other two e.g. (220, 20, 30). As overall white lighting
increases, the RGB value increases to (240, 40, 50), then (255, 80, 90), then (255, 120, 130), and then
(255, 160, 170). Once the red component is maximized, additional light can only increase the blue
and green, and acts to dilute the measured color and lower the saturation. If the point is to identify
the red object, it is useful to adjust the exposure to avoid diluting your principle color. The desired
image will look somewhat dark except for the colored shine.

There are two approaches to control camera exposure times. One is to allow the camera to
compute the exposure settings automatically, based on its sensors, and then adjust the camera’s
brightness setting to a small number to lower the exposure time. The brightness setting acts

Vision Processing

Page 13Vision Processing Last Updated: 08-08-2019

similar to the exposure compensation setting on SLR cameras. The other approach is to calibrate
the camera to use a custom exposure setting. To do this on a 206 or M1011, change the exposure
setting to auto, expose the camera to bright lights so that it computes a short exposure, and then
change the exposure setting to hold. Both approaches will result in an overall dark image with
bright saturated target colors that stand out from the background and are easier to mask.

The M1013 exposure settings look a little different. The Enable Backlight compensation option is
similar to the Auto exposure settings of the M1011 and 206 and you will usually want to un-check
this box. Adjust the Brightness and Exposure value sliders until your image looks as desired. The
Exposure Priority should generally be set to Motion. This will prioritize framerate over image
quality. Note that even with these settings the M1013 camera still performs some auto exposure
compensation so it is recommended to check calibration frequently to minimize any impact
lighting changes may have on image processing. See the article on Calibration for more details.

Vision Processing

Page 14Vision Processing Last Updated: 08-08-2019

Identifying and Processing the Targets

Once an image is captured, the next step is to identify Vision Target(s) in the image. This
document will walk through one approach to identifying the 2014 targets and distinguishing
between targets for Hot and not Hot goals. Note that the images used in this section were
taken with the camera intentionally set to underexpose the images, producing very dark
images with the exception of the lit targets, see the section on Camera Settings for details.

Additional Options
This document walks through the approach used by the example code provided in LabVIEW (for PC
or cRIO), C++ and Java, details on the language specific examples are provided in subsequent
articles. In addition to these options teams should be aware of the following alternatives that allow
for vision processing on the Driver Station PC or an on-board PC:

1. RoboRealm
2. SmartDashboard Camera Extension (programmed in Java, works with any robot language)
3. SmartCppDashboard (Community project to provide ability to program C++ vision extensions to

the SmartDashboard. Not produced or tested by FIRST or WPI)

Original Image
The image shown below is the starting image for the example described here. The image was
taken using the green ring light available in FIRST Choice. Additional sample images are provided
with the vision code examples. Some of the sample images were taken with the FIRST Choice ring
light, others were taken with a variety of combinations of LED ring lights of different sizes, many
with one nested inside the other.

Vision Processing

Page 15Vision Processing Last Updated: 08-08-2019

http://www.roborealm.com/FRC2013/
http://firstforge.wpi.edu/sf/frs/do/viewRelease/projects.smartdashboard/frs.installer.installer_1_0_3
http://firstforge.wpi.edu/sf/projects/smartcppdashboard
http://www.andymark.com/FIRST-Choice-p/fc13-060.htm
http://www.superbrightleds.com/cat/led-headlight-accent-lights/

What is HSL/HSV?
The Hue or tone of the color is commonly seen on the artist’s color wheel and contains the colors
of the rainbow Red, Orange, Yellow, Green, Blue, Indigo, and Violet. The hue is specified using a
radial angle on the wheel, but in imaging the circle typically contains only 256 units, starting with
red at zero, cycling through the rainbow, and wrapping back to red at the upper end. Saturation of
a color specifies amount of color, or the ratio of the hue color to a shade of gray. Higher ratio
means more colorful, less gray. Zero saturation has no hue and is completely gray. Luminance or
Value indicates the shade of gray that the hue is blended with. Black is 0 and white is 255.

The example code uses the HSV color space to specify the color of the arget. The primary reason is
that it readily allows for using the brightness of the targets relative to the rest of the image as a
filtering criteria by using the Value (HSV) or Luminance (HSL) component. Another reason to use
the HSV color system is that the thresholding operation used in the example runs more efficiently
on the cRIO when done in the HSV color space.

Masking
In this initial step, pixel values are compared to constant color or brightness values to create a
binary mask shown below in red. This single step eliminates most of the pixels that are not part of
a target’s retro-reflective tape. Color based masking works well provided the color is relatively
saturated, bright, and consistent. Color inequalities are generally more accurate when specified

Vision Processing

Page 16Vision Processing Last Updated: 08-08-2019

using the HSL (Hue, Saturation, and Luminance) or HSV (Hue, Saturation, and Value) color space
than the RGB (Red, Green, and Blue) space. This is especially true when the color range is quite
large in one or more dimension.

Teams may find it more computationally efficient, though potentially less robust, to filter based on
only a single criteria such as Hue or Value/Luminance.

Particle Analysis
After the masking operation, a particle report operation is used to examine the area, bounding
rectangle, and equivalent rectangle for the particles. These are used to compute several scored
terms to help pick the shapes that are most rectangular. Each test described below generates a
score (0-100) which is then compared to pre-defined score limits to decide if the particle is a target
or not.

Rectangularity

The rectangle score is calculated as (Particle Area / Bounding Box Area) * 100. A perfectly
rectangular particle will score 100, a circular particle will score (π/4) * 100, or about 78, and the
score will drop even further for diagonal lines and other streaks. In this image the camera is
slightly tilted causing the rectangles to be slightly skewed. This results in a diminished
rectangularity score, but the resulting scores are still high enough to be considered a target. In the

Vision Processing

Page 17Vision Processing Last Updated: 08-08-2019

images below a representative bounding box for each particle has been drawn in green over the
masked image.

Aspect Ratio

The aspect ratio score is based on (Particle Width / Particle Height). The width and height of the
particle are determined using something called the "equivalent rectangle". The equivalent
rectangle is the rectangle with side lengths x and y where 2x+2y equals the particle perimeter and
x*y equals the particle area. The equivalent rectangle is used for the aspect ratio calculation as it is
less affected by skewing of the rectangle than using the bounding box. When using the bounding
box rectangle for aspect ratio, as the rectangle is skewed the height increases and the width
decreases.

The Horizontal and Vertical targets on the field have different aspect ratios, so two aspect ratio
scores are generated, one for each target type. The field target ratios are 4/32 for the vertical and
23.5/4 for the horizontal target. The aspect ratio score is normalized to return 100 when the ratio
matches the target ratio and drops linearly as the ratio varies below or above.

Vision Processing

Page 18Vision Processing Last Updated: 08-08-2019

Target Pairing
After identifying which particles appear to be targets, the next step is to determine if their are any
complete Hot Goal targets in the image by attempting to pair each detected vertical target with
each detected horizontal target and calculating some scores to determine if they are likely part of
the same Hot Goal indicator.

Left/Right Score

The first calculation is to check if the horizontal target appears to be in the correct horizontal
location relative to the vertical target. To determine this, the distance between the center of the
horizontal target and the closest edge of the vertical target is calculated. This distance should be
approximately 1.2 times larger than the width of the horizontal target. This ratio is then converted
to a 0-100 score using a piecewise linear function that goes from (0,0) to (1,100) to (2,0) and is 0 for
all values outside the range 0 to 2.

Tape Width Score

If the two targets are located physically close to each other the width of the tape should appear
very similar to the camera. The ratio of the vertical target height to the horizontal target width is
calculated and converted to a 0-100 score using the same method described above.

Vertical Score

The last score checks if the horizontal target is in the proper vertical location relative to the vertical
target. The difference between the top of the vertical target and the center of the horizontal target
is calculated and divided by 4 times the height of the horizontal target. 1 minus this value is used
to calculate the score as indicated above.

Hot Targets
The implementation in the LabVIEW code differs slightly from the C++/Java example at this point.
The LabVIEW code determines the best horizontal match for each vertical target, checks if it is a

Vision Processing

Page 19Vision Processing Last Updated: 08-08-2019

hot target, then provides targeting information for all vertical targets, sorted in the order Left Hot
targets, Right Hot targets, Not Hot targets. The C++ and Java example selects the one target pair
with the best total score, then checks if it is a Hot target or not.

Measurements
If a particle scores well enough to be considered a target, it makes sense to calculate some real-
world measurements such as position and distance. The example code includes these basic
measurements, so let’s look at the math involved to better understand it.

Position

The target position is well described by both the particle and the bounding box, but all coordinates
are in pixels with 0,0 being at the top left of the screen and the right and bottom edges
determined by the camera resolution. This is a useful system for pixel math, but not nearly as
useful for driving a robot; so let’s change it to something that may be more useful.

To convert a point from the pixel system to the aiming system, we can use the formula shown
below.

The resulting coordinates are close to what you may want, but the Y axis is inverted. This could be
corrected by multiplying the point by [1,-1] (Note: this is not done in the sample code). This
coordinate system is useful because it has a centered origin and the scale is similar to joystick
outputs and RobotDrive inputs.

Note: In the C++ and Java example, this information is provided by using the Normalized Center of
mass from the target report for the horizontal or vertical target particle.

Note 2: In LabVIEW this information is calculated using the vertical target in order to apply to both
Hot and Not Hot targets.

Vision Processing

Page 20Vision Processing Last Updated: 08-08-2019

Distance

The target distance is computed with knowledge about the target size and the camera optics. The
approach uses information about the camera lens view angle and the width of the camera field of
view. Shown below-left, a given camera takes in light within the blue pyramid extending from the
focal point of the lens. Unless the lens is modified, the view angle is constant and equal to 2Θ. As
shown to the right, the values are related through the trigonometric relationship of …

tanΘ = w/d

The datasheets for the Axis cameras can be found at the following URLs:Axis 206, AxisM1011, Axis
M1013. These give rough horizontal view angles for the lenses. Remember that this is for entire
field of view, and is therefore 2Θ. This year's code uses the vertical field-of-view and it is therefore
highly recommend to perform calibration (as described in the next article) to determine the
appropriate view angle for your camera (empirically determined values for each camera type are
included in the code as a reference).

Distance

Vision Processing

Page 21Vision Processing Last Updated: 08-08-2019

http://www.axis.com/files/datasheet/ds_206_33168_en_0904_lo.pdf
http://www.axis.com/files/datasheet/ds_m10_51860_en_lo_0513.pdf
http://www.axis.com/files/datasheet/ds_m10_51860_en_lo_0513.pdf
http://www.axis.com/files/datasheet/ds_m10_51860_en_lo_0513.pdf

Distance Continued

The next step is to use the information we have about the target to find the width of the field of
view the blue rectangle shown above. This is possible because we know the target rectangle size in
both pixels and feet, and we know the FOV rectangle width in pixels. We can use the relationships
of …

Tft/Tpixel = FOVft/FOVpixel and FOVft = 2*w = 2*d*tanΘ

to create an equation to solve for d, the distance from the target:

d = Tft*FOVpixel/(2*Tpixel*tanΘ)

The Y axis field of view is calculated. We know that the target height measures 32 in. for the
Vertical Target, and in the example images used earlier the Vertical target rectangle measures 40
pixels when the camera resolution was 320x240. This means that the blue rectangle width is
2.66*320/30 or 21.28ft. Half of the width is 10.64 ft, and the camera used was the 206, so the view
angle is ~41.7˚, making Θ be 20.85˚. Putting this information to use, the distance to the target is
equal to 10.64/tan20.85˚ or 28ft.

Notice that the datasheets give approximate view angle information. When testing, it was found
that the calculated distance to the target tended to be a bit short. Using a tape measure to
measure the distance and treating the angle as the unknown it was found that view angles of
41.7˚ for the 206, 37.4˚ for the M1011, and 49˚ for the M1013 gave better results. Information on
performing your own distance calibration is included in the next article.

Vision Processing

Page 22Vision Processing Last Updated: 08-08-2019

Calibration

While many of the numbers for the Vision Processing code can be determined theoretically,
there are a few parameters that are typically best to measure empirically then enter back into
the code (a process typically known as calibration). This article will show how to perform
calibration for the Color (masking), and View Angle (distance) using the NI Vision Assistant. If
you are using C++ or Java and have not yet installed the NI Vision Assistant, see the article
Installing NI Vision Assistant.

Enable Snapshots

To capture snapshots from the Axis camera, you must first enable the Snapshot button. Open a
web-browser and browse to camera's address (10.TE.AM.11), enter the Username/Password

Vision Processing

Page 23Vision Processing Last Updated: 08-08-2019

combo FRC/FRC if prompted, then click Setup->Live View Config->Layout. Click on the checkbox to
Show snapshot button then click Save.

Check Camera Settings

Depending on how you are capturing the image stream in your program, it may be possible to
stream a different resolution, framerate and/or compression than what is saved in the camera and
used in the Live View. Before performing any calibration it is recommended you verify that the
settings in the camera match the settings in your code. To check the settings in the camera, click
on the Video and Image header on the left side of the screen, then click Video and Image.

Vision Processing

Page 24Vision Processing Last Updated: 08-08-2019

Capture Images

Click the Live View button to return to the Live View page and you should now see a Snapshot
button. Clicking this button opens a pop-up window with a static image capture. Right-click on this
image, select Save Image as and select your desired location and file name, then save the image.

Vision Processing

Page 25Vision Processing Last Updated: 08-08-2019

Load Image(s) in Vision Assistant

Open the NI Vision Assistant and select the Browse Images option. Select the Open Images icon in
the top left of the Toolbar, then locate your images. Repeat as necessary to load all desired
images.

Vision Processing

Page 26Vision Processing Last Updated: 08-08-2019

Color Threshold

Click Process Images in the top right, then select the color tab on the bottom right and click the
Color Threshold icon.

Vision Processing

Page 27Vision Processing Last Updated: 08-08-2019

HSV Calibration

Change the Color Model dropdown to HSV. Next tune the window on each of the three values to
cover as much of the target as possible while filtering everything else. If using a green light, you
may want to use the values in the sample code as a starting point. If you have multiple images you
can use the controls in the top left to cycle through them. Use the center two arrow controls or the
slider to change the preview image in the top left window, then click the right-most arrow to make
it the active image. When you are happy with the values you have selected, note down the ranges
for the Hue, Saturation and Value. You will need to enter these into the appropriate place in the
vision code. Click OK to finish adding the step to the script.

You may wish to take some new sample images using the time for camera calibration at your
event to verify or tweak your ranges slightly based on the venue lighting conditions.

Vision Processing

Page 28Vision Processing Last Updated: 08-08-2019

View Angle/Distance Calibration
While a theoretical view angle for each camera model can be found in the datasheet, empirical
testing has found that these numbers may be a bit off even for the horizontal view angle. Given
that this year's code uses the vertical field-of-view it is best to perform your own calibration for
your camera (though empirical values for each camera type are included in the code as a
reference). To do this set up an equation where the view angle, Θ, is the only unknown. To do this,
utilize a target of known size at a known distance, leaving the view angle as the only unknown.
Let's take our equation from the previous article, d = Tft*FOVpixel/(Tpixel*tanΘ), and re-arrange it
to solve for Θ:

tanΘ = Tft*FOVpixel/(Tpixel*d)

Θ = arctan(Tft*FOVpixel/(Tpixel*d))

Taking measurements

Vision Processing

Page 29Vision Processing Last Updated: 08-08-2019

One way to take the required measurements is to use the same images of the retro-reflective tape
that were used for the color calibration above. We can use Vision Assistant to provide the height of
the detected blob in pixels. By measuring the real-world distance between the camera and the
target, we now have all of the variables to solve our equation for the view angle.

To measure the particles in the image, click the Binary tab, then click the Particle Analysis icon.

Selecting Measurements

Click on the Select Measurements button. In this case, we are only interested in the bounding box
height. Click on the button with the X to deselect all measurements, then locate the Bounding Rect
Height measurement and check the box. Click OK to save.

Vision Processing

Page 30Vision Processing Last Updated: 08-08-2019

Measuring the Particle

The measurements for each particle will now be displayed in the window at the bottom of the
screen. If your image has multiple particles, you can click in each box to have Vision Assistant
highlight the particle so you can make sure you have the right one. This article will show the
calculation using a single image, but you may wish to perform the calculation on multiple images
from multiple distances and use a technique such as averaging or least squares fit to determine
the appropriate value for the View angle. You can use the same arrow controls described in the
color section above to change the active image.

Calculation

As seen in the previous step, the particle representing the 32in tall vertical target in this example
measured 85 pixels tall in a 640x480 image. The image shown was taken from (very roughly) 18 ft.
away. Plugging these numbers into the equation from above....

Θ = arctan(2.66*480/(2*85*18)) = 22.65 degrees

Vision Processing

Page 31Vision Processing Last Updated: 08-08-2019

Depending on what you use to calculate the arctangent, your answer may be in radians, make sure
to convert back to degrees if entering directly into the sample code as the view angle.

Note: The code uses View Angle and we just calculated Θ. Make sure to multiply Θ by 2 if
replacing the constants in the code.Multiplying our result by 2 yields 45.3 degrees. This image is
from a M1013 camera, so our value is a bit off from the previously measured 29.1 but given that
the 18ft. was a very rough measurement this shows that we are in the ballpark and likely
performed the calculation correctly.

Vision Processing

Page 32Vision Processing Last Updated: 08-08-2019

LabVIEW Code

The previous articles detailed the theoretical approach to identifying the Vision Targets on the
2014 FRC Field. This article details the implementation in the LabVIEW code that matches this
theoretical approach.

Integrating into Program

The elements of the 2014 Vision example can be incorporated into the robot program, dashboard,
or contain elements in both. For more information about integrating the code into a program, see
Tutorial 8 included with your LabVIEW install by clicking Tutorials -> Tutorial 8 from the Splash
screen.

Vision Processing

Page 33Vision Processing Last Updated: 08-08-2019

Finding the Example

The 2013 LaVIEW example vision code is bundled along with the other LabVIEW examples. To find
the example from the LabVIEW splash screen, click Support >> Find FRC Examples then open the
Vision Folder and locate 2014 Target Detection.lvproj

Vision Processing

Page 34Vision Processing Last Updated: 08-08-2019

The Front Panel

2014 Target Detection.vi is the main VI of the project. Double clicking on this VI in the Project
Explorer will show the front panel shown above. The front panel contains a variety of controls and
indicators used in the example

1. The File/Camera controls: This section contains the controls for selecting the camera to connect
to or file to process. On the File Images tab, clicking the folder icon will allow you to browse to a
directory containing the desired images, then click the image in the box to select it. On the Live
Camera tab you can enter the IP address of the camera to connect to and set the resolution,
framerate, and compression.

2. The Camera Type: The camera type control changes the view angle used in the distance
calculation based on the camera used.

3. The Color Threshold Controls: This section contains the controls used for the initial
thresholding operation on the image. The Color tab has controls for the Hue, Saturation and
Value and margins for each (to set the width of the range). Note that these values can be set
automatically by clicking and dragging a line on the desired color in the Original Image
section. Remember that to save modified values, after the program has stopped running

Vision Processing

Page 35Vision Processing Last Updated: 08-08-2019

right click on the desired control and select "Data Operations" >> " Make Current Value
Default"

4. Area Size Limit: This controls limits the minimum particle size to be scored as a percentage of
the total image size.

5. Score Cutoff: This section sets the minimum limit for each score used to determine if a target is
a hot target. A target pair must exceed this minimum for the Tape Width and Vertical Score and
one of the two directional scores to be considered a Hot Target.

6. Std Devs: This section is used to tweak the behavior of the automatic color selection. The
numbers in the boxes represent the number of standard deviations from the mean that will be
included in the range created when a line is drawn across the image.

7. Original Image: This section contains the original unprocessed image. Clicking and dragging
anywhere in this image will set the color threshold values to detect that color. Detected
particles will be annotated depending on whether they are determined to be a target or not.
Particles which are not targets or a pair of targets which are not considered a Hot Target will be
surrounded by a red box. Non-Targets will include the Aspect ratio and Rect score highlighting
in red the scores which do not meet the cutoff, not-Hot pairs will include the Left, Right, Tape
Width and Vertical Scores, highlighting in red scores which do not meet the cutoff. Particles
which are vertical targets determined to be not hot targets are surrounded by a teal box with
the Aspect Ratio and Rectangularity scores in teal. Hot targets will be surrounded by a green
box with the Left, Right, Tape Width and Vertical scores in green (the unused Left or Right score
will be in grey).

8. Debugging Tab: This tab shows the processed image. This is the image after thresholding, but
does not show the results of the particle filtering.

9. Details Tab: Clicking on the Details tab will show an array indicator (click the arrows near the
top right of the tab to view other particles) containing details on each detected particle/target.

10. Loop Time: This indicator shows the rate at which the loop is running.

Vision Processing

Page 36Vision Processing Last Updated: 08-08-2019

Acquiring an Image and Clearing Overlays

The left hand side of the LabVIEW code handles image acquisition and clearing overlays. It will
typically not be necessary to modify this code.

Set Threshold Values

The top right section of the code sets the HSV threshold values on a click and drag event or passes
through the values set in the controls.

Vision Processing

Page 37Vision Processing Last Updated: 08-08-2019

Target Search

The Process Image for Target VI is responsible for thresholding the image, filtering out small
particles and determining which particles are believed to be horizontal or vertical targets.

Target Search Details - Threshold

This section of the code performs the threshold operation on the image, creating a binary image
with only the pixels which match the specified color range. You can also see the math converting
the Area Cutoff % to a pixel value in the bottom center of this section.

Vision Processing

Page 38Vision Processing Last Updated: 08-08-2019

Target Search Details - Particle Filter and Report

This section of the code filters out small particles and creates a report for each remaining particle
(up to 8) which contains the specified measurements.

Vision Processing

Page 39Vision Processing Last Updated: 08-08-2019

Target Search Details - Scoring

This section of the code scores the particles on Rectangularity and Aspect Ratio and indicates
whether the particle is larger horizontally or vertically. It uses the orientation to pack up the
Equivalent Rectangle measurements, along with the other values, into a cluster which is output
from the VI.

Score and Rank Targets

The Score and Rank Target Objects VI iterates through each vertical target and determines the best
matching horizontal target then compares the Left or Right Score, Tape Width Score and Vertical
Score to determine if the target is a Hot Target. This VI also annotates the image and sorts the
detected targets in the order Left Targets, Right Targets, Not Hot Targets.

Vision Processing

Page 40Vision Processing Last Updated: 08-08-2019

Find Horizontal

The Rank HV Combos VI iterates through each Horizontal Target and computes the Left Score,
Right Score, Tape Width Score and Vertical Score. It then sorts the Horizontals by Total Score (sum
of Left, Right, Width and Vertical) to select the best matching Horizontal for the Vertical.

Score and Rank Targets Details - Score Compare

Vision Processing

Page 41Vision Processing Last Updated: 08-08-2019

This section of code compares the scores to the Score Limit and determines if the target is a Hot
target.

Score and Rank Target Details - Annotation

This section annotates the images with the boxes and scores for each particle.

Score and Rank Target Details - Sorting

Vision Processing

Page 42Vision Processing Last Updated: 08-08-2019

This section of the code sorts the targets placing Left Targets first in the array, then Right Targets,
then Not Hot Targets

Compute Distance

The code in the Compute Target Distances VI implements the formula described in the previous
article. The top part of the VI normalizes the target bounding box to provide a coordinate pair for
the target center on the (-1,1) scale. The bottom part of the VI computes the distance.

Vision Processing

Page 43Vision Processing Last Updated: 08-08-2019

Sample Images

A number of sample images are provided in the example Project Directory. The provided images
are broken up into groups, one group is of a pseudo-target in the Hot position (reflective tape
attached directly to the polycarbonate in the correct locations). Another group is of the pseudo-
target in the Not hot position. The last group is images of the actual target setup from the kickoff
filming field. All lit images were taken with a pair of green LED ring lights that nest one inside the
other. While these images should help teams test algorithms quickly, it is highly recommended to
utilize the reflective material provided in the Kit of Parts to create a target to test the camera and
lighting setup that will be used on the robot. Note that the measurements in the image filenames
are very rough and should not be taken as accurate measurements to be used for distance
calibration calculations.

Vision Processing

Page 44Vision Processing Last Updated: 08-08-2019

C++/Java Code

The Identifying the Targets section explains a theoretical approach to locating the Vision
Targets on the 2014 FRC Field. This document will cover the details of C++ and Java examples
which implement this theoretical approach. Note that in addition to the typical differences
between the C++ and Java WPILib code, there are also a few additional differences prompted
by the way the NIVision functions are accessed from the Java code. Through the syntax may
differ slightly the general approaches are similar enough that this document will walk through
the C++ code which should provide sufficient insight into the function for both C++ and Java
teams.

Finding the Example: C++

Finding the Example: C++

For C++ teams, the example can be found by selecting File >> New >> Example. Then select
VxWorks Downloadable Kernel Module Sample Project and click Next. Select FRC 2014 Vision
Sample Program and click Finish to open the sample.

Finding the Example: Java

Finding the Example: Java

For Java teams, the example can be found by selecting File >> New Project. Then Expand the
Samples folder, select FRC Java and click on the 2014VisionSampleProject, then click Next. Enter
a name and location for the project, then click Finish.

The Approach
Before examining the code, it is worth noting that the program samples are written using the
Simple Robot framework and do not contain any other code in autonomous. The code will execute

Vision Processing

Page 45Vision Processing Last Updated: 08-08-2019

continuously, as quickly as possible, resulting in 100% usage of the cRIO CPU. When integrating
this code into a different robot framework or integrating other team code, teams should make
sure to add waits as appropriate and may wish to reduce the rate the code attempts to process at
(processing every X loops in the Iterative Robot framework for example or every X milliseconds in
the Command framework).

Also note that all of the methods are contained within the single class and file in order to make the
example easier to read and understand. When adding to the example or integrating it with team
code teams may wish to break out the scoring methods and structure into a separate class and
file(s) in order to better organize the code.

Code Constants

The sample code uses a number of constants that can be modified to tweak the behavior of the
code. Many of these constants are defined at the top of the code, but teams should note that there
are additional values contained inline that may also be tweaked such as the threshold values for
the color threshold. Note that when changing camera resolutions, in addition to changing the
resolution constant, it may also be necessary to change the Area Minimum constant to an
appropriate value.

Vision Processing

Page 46Vision Processing Last Updated: 08-08-2019

Scores and Target Report Structures

In order to store the scores for all of the individual tests for a particular particle together, a
structure is used to contain all of the scores. A separate structure is used to contain information
about targets.

Filter Criteria

Filter Criteria

The threshold values used for the color threshold and the criteria object used for filtering out
small particles is defined here. The filter criteria runs from the specified minimum area to the max
integer value in order to filter out all particles smaller than the minimum.

Image Operations

Image Operations

The first step of the processing is to perform the image operations: thresholding, and filtering.
Code has been provided, but commented out, to write out each step of the image processing to
the cRIO flash where it can be retrieved using FTP. To access and view the images, open up a
Windows Explorer window and enter "FTP://10.XX.YY.2" in the navigation bar, where XXYY is a 4
digit FRC team number.

Vision Processing

Page 47Vision Processing Last Updated: 08-08-2019

To execute properly the code, as written, must have an image named testImage.jpg stored
in the cRIO's root directory. To do this open up a Windows Explorer window and enter
"FTP://10.XX.YY.2" in the navigation bar, where XXYY is a 4 digit FRC team number. You can then
copy and rename an image from the sample images folder described below in the "Sample
Images" section. It is highly recommended to take a new set of sample images using the actual
robot, camera and lighting when available.

Alternatively, commented code is also provided to read from the Axis camera.

Note: It is strongly recommended to comment out the while loop before enabling the image
writes in order to preserve the cRIO flash memory. Writing the images within the while loop
may result in excessive wear to the cRIO flash memory.

Particle Analysis

Particle Analysis

A report is generated for each particle and then the reports are ordered from largest particle to
smallest. An array of scores is created based on the number of particles.

Scoring Particles

Scoring Particles

Each particle is scored according to the approach described in the Identifying the Targets section,
then the scores are compared to the defined minimum scores for both horizontal and vertical
targets. The determination on the particle (target or not) is printed to the console along with the
center and scores of the particle for debugging purposes.

This section of code is one that teams are recommended to modify to suit their robot and
approach to vision processing and debugging, Teams may wish to modify the information printed
to the console, or replace the console code with SmartDashboard code for the same purpose.

Vision Processing

Page 48Vision Processing Last Updated: 08-08-2019

../../8731/l/90361?data-resolve-url=true&data-manual-id=8731

Score Aspect Ratio

The scoring of the Aspect Ratio is broken out into it's own method for clarity. This method
compares the aspect ratio of the equivalent rectangle to the ideal aspect ratio for the target (which
target type to use is determined by a parameter passed in)

Score Rectangularity

The scoring of the Aspect Ratio is broken out into it's own method for clarity. This method
compares the area of the particle to the area of the bounding box and returns a score between 0
and 100.

Vision Processing

Page 49Vision Processing Last Updated: 08-08-2019

Ratio To Score

Many of the score calculations utilize the same subcalculation to convert a ratio with an ideal value
of 1 to a 0-100 score value using a piecewise linear function that goes from (0,0) to (1,100) to (2,0).
This calculation was broken out into a method to allow the code to be re-used for multiple score
calculations.

Score Compare

The scoreCompare method checks if a particle is a target (meets all of the score minimums) of a
specified type.

Vision Processing

Page 50Vision Processing Last Updated: 08-08-2019

Finding Hot Targets

This section of the code iterates through each previously detected vertical target and calculates the
scores for each detected horizontal target. After a pair is scored, the code checks if the total score
for this pair is the highest detected so far; if so, information about the target is saved for later use.
Finally the code checks if the target is a hot target or not.

Vision Processing

Page 51Vision Processing Last Updated: 08-08-2019

Hot or Not

The hotOrNot method compares the scores for a target to the specified minimums in order to
determine if the target is a Hot Target.

Print Target Info

This section of the code computes the distance to the best detected target and prints out if the
best target is a Hot target or not and the distance to the target.

Vision Processing

Page 52Vision Processing Last Updated: 08-08-2019

Computing Distance

The computeDistance method computes the distance to a vertical target using the approach
described in the previous article. The image must be passed to the method so the method can
make the equivalent rect measurement.

Cleanup

After processing is complete it is critical to release the memory from dynamically allocated objects
such as the images, array of scores and vector of reports. Failing to release the memory used by
these objects will "leak" the references to this memory and will result in the memory usage of the
program steadily climbing until no free memory remains and the program crashes.

Vision Processing

Page 53Vision Processing Last Updated: 08-08-2019

Sample Images

A number of sample images are provided in the VisionImages folder in the example Project
Directory. The provided images are broken up into groups, one group is of a pseudo-target in the
Hot position (reflective tape attached directly to the polycarbonate in the correct locations).
Another group is of the pseudo-target in the Not hot position. The last group is images of the
actual target setup from the kickoff filming field. All lit images were taken with a pair of green LED
ring lights that nest one inside the other. While these images should help teams test algorithms
quickly, it is highly recommended to utilize the reflective material provided in the Kit of Parts to
create a target to test the camera and lighting setup that will be used on the robot. Note that the
measurements in the image filenames are very rough and should not be taken as accurate
measurements to be used for distance calibration calculations.

Vision Processing

Page 54Vision Processing Last Updated: 08-08-2019

Axis M1013 Camera Compatibility

It has come to our attention that the Axis M1011 camera has been discontinued and
superseded by the Axis M1013 camera. This document details any differences or issues we are
aware of between the two cameras when used with WPILib and the provided sample vision
programs.

Optical Differences
The Axis M1013 camera has a few major optical differences from the M1011 camera:

1. The M1013 is an adjustable focus camera. Make sure to focus your M1013 camera by turning
the grey and black lens housing to make sure you have a clear image at your desired viewing
distance.

2. The M1013 has a wider view angle (67 degrees) compared to the M1011 (47 degrees). This
means that for a feature of a fixed size, such as the 4 in. wide retroreflective tape, the image of
that feature will span a smaller number of pixels

Using the M1013 With WPILib
The M1013 camera has been tested with all of the available WPILib parameters and the following
performance exceptions were noted:

1. The M1013 does not support the 160x120 resolution. Requesting a stream of this resolution
will result in no images being returned or displayed.

2. The M1013 does not appear to work with the Color Enable parameter exposed by WPILib.
Regardless of the setting of this parameter a full color image was returned.

All other WPILib camera parameters worked as expected. If any issues not noted here are
discovered, please file a bug report on the WPILib tracker (note that you will need to create a
FIRSTForge account if you do not have one, but you do not need to be a member of the project).

Vision Processing

Page 55Vision Processing Last Updated: 08-08-2019

http://firstforge.wpi.edu/sf/tracker/do/listTrackers/projects.wpilib/tracker

Using the M1013 With Vision Sample Code
If using the M1013 camera with the provided Vision sample code, or code based on it, please note
the following:

1. Per #2 in Optical Differences above, the view angle of the camera is different than the M1011.
The code for distance calculation will need to be modified to use the appropriate angle. Based
on testing with the 206 and M1011 cameras, teams may wish to take measurements of the
actual distance to the target and corresponding image parameters and calculate an empirical
view angle.

2. Per #2 in Using the M1013 With WPILib above, the Color Enable parameter does not appear to
work with the M1013. This does not affect the Monochrome option of the LabVIEW sample.
This option of the sample code processes a single plane of the image, but does not request a
monochrome image.

Vision Processing

Page 56Vision Processing Last Updated: 08-08-2019

	2014 Vision Processing
	Target Info and Retroreflection
	Vertical Targets
	Horizontal Targets
	Horizontal Target Behavior

	Retroreflectivity vs. Reflectivity
	Examples of Retroreflection
	Demonstration
	Lighting
	More Information
	Sample Images

	Camera Settings
	Changing Camera Settings
	Focus
	Compression
	Resolution
	Frame Rate
	Color Enable
	White Balance
	Exposure

	Identifying and Processing the Targets
	Additional Options
	Original Image
	What is HSL/HSV?
	Masking
	Particle Analysis
	Rectangularity
	Aspect Ratio

	Target Pairing
	Left/Right Score
	Tape Width Score
	Vertical Score

	Hot Targets
	Measurements
	Position
	Distance
	Distance Continued

	Calibration
	Enable Snapshots
	Check Camera Settings
	Capture Images
	Load Image(s) in Vision Assistant
	Color Threshold
	HSV Calibration

	View Angle/Distance Calibration
	Taking measurements
	Selecting Measurements
	Measuring the Particle
	Calculation

	LabVIEW Code
	Integrating into Program
	Finding the Example
	The Front Panel
	Acquiring an Image and Clearing Overlays
	Set Threshold Values
	Target Search
	Target Search Details - Threshold
	Target Search Details - Particle Filter and Report
	Target Search Details - Scoring

	Score and Rank Targets
	Find Horizontal
	Score and Rank Targets Details - Score Compare
	Score and Rank Target Details - Annotation
	Score and Rank Target Details - Sorting

	Compute Distance
	Sample Images

	C++/Java Code
	Finding the Example: C++
	Finding the Example: Java
	The Approach
	Code Constants
	Scores and Target Report Structures
	Filter Criteria
	Image Operations
	Particle Analysis
	Scoring Particles
	Score Aspect Ratio
	Score Rectangularity
	Ratio To Score
	Score Compare

	Finding Hot Targets
	Hot or Not
	Print Target Info
	Computing Distance

	Cleanup
	Sample Images

	Axis M1013 Camera Compatibility
	Optical Differences
	Using the M1013 With WPILib
	Using the M1013 With Vision Sample Code

