
COMMAND BASED
PROGRAMMING

Last Updated: 08-13-2019

Table of Contents

Command based programming ..4
What is Command based programming? ...5

Creating a command based robot project in C++ 11
Installing the C++ Workbench plugin ... 12

Creating a robot project - C++ ... 13

Adding Commands and Subsystems to the project - C++ 15

Creating a command based robot project in Java 19
Creating a robot project - Java .. 20

Adding Commands and Subsystems - Java ... 23

Defining robot subsystems ... 25
Simple subsystems ... 26

PIDSubsystems for built-in PID control .. 27

Adding robot behaviors - commands .. 28
Creating Simple Commands .. 29

Creating groups of commands ... 32

Running commands on Joystick input .. 34

Running commands during the autonomous period .. 36

Converting a Simple Autonomous program to a Command based autonomous
program ... 38

Default Commands ... 41

Connecting behaviors to the operator interface 42

Command based programming

Synchronizing two commands .. 43

Command based programming

Command based
programming

Command based programming

Page 4Command based programming Last Updated: 08-13-2019

What is Command based programming?

WPILib supports a method of writing programs called "Command based programming".
Command based programming is a design pattern to help you organize your robot programs.
Some of the characteristics of robot programs that might be different from other desktop
programs are:

• Activities happen over time, for example a sequence of steps to shoot a Frisbee or raise an
elevator and place a tube on a goal.

• These activities occur concurrently, that is it might be desirable for an elevator, wrist and
gripper to all be moving into a pickup position at the same time to increase robot
performance.

• It is desirable to test the robot mechanisms and activities each individually to help debug
your robot.

• Often the program needs to be augmented with additional autonomous programs at the
last minute, perhaps at competitions, so easily extendable code is important.

Command based programming supports all these goals easily to make the robot program
much simpler than using some less structured technique.

Commands and subsystems

Programs based on the WPILib library are organized around two fundamental concepts:
Subsystems and Commands.

Command based programming

Page 5Command based programming Last Updated: 08-13-2019

Subsystems - define the capabilities of each part of the robot and are subclasses of Subsystem.

Commands - define the operation of the robot incorporating the capabilities defined in the
subsystems. Commands are subclasses of Command or CommandGroup. Commands run when
scheduled or in response to buttons being pressed or virtual buttons from the SmartDashboard.

How commands work

Commands let you break up the tasks of operating the robot into small chunks. Each command
has an execute() method that does some work and an isFinished() method that tells if it is done.
This happens on every update from the driver station or about every 20ms. Commands can be
grouped together and executed sequentially, starting the next one in the group as the previous
one finishes.

Command based programming

Page 6Command based programming Last Updated: 08-13-2019

Concurrency

Sometimes it is desirable to have several operations happening concurrently. In the previous
example you might want to set the wrist position while the elevator is moving up. In this case a
command group can start a parallel command (or command group) running.

Command based programming

Page 7Command based programming Last Updated: 08-13-2019

How It Works - Scheduling Commands

There are three main ways commands are scheduled:

1. Manually, by calling the start() method on the command (used for autonomous)
2. Automatically by the scheduler based on button/trigger actions specified in the code (typically

defined in the OI class but checked by the Scheduler).
3. Automatically when a previous command completes (default commands and command

groups).

Each time the driver station gets new data, the periodic method of your robot program is called. It
runs a Scheduler that checks the trigger conditions to see if any commands need to be scheduled
or canceled.

When a command is scheduled, the Scheduler checks to make sure that no other commands are
using the same subsystems that the new command requires. If one or more of the subsystems is
currently in use, and the current command is interruptible, it will be interrupted and the new
command will be scheduled. If the current command is not interruptible, the new command will
fail to be scheduled.

Command based programming

Page 8Command based programming Last Updated: 08-13-2019

../../7952/l/97994?data-resolve-url=true&data-manual-id=7952
../../7952/l/97457?data-resolve-url=true&data-manual-id=7952
../../7952/l/129364?data-resolve-url=true&data-manual-id=7952
../../7952/l/80210?data-resolve-url=true&data-manual-id=7952
../../7952/l/80210?data-resolve-url=true&data-manual-id=7952

How It Works - Running Commands

After checking for new commands, the scheduler proceeds through the list of active commands
and calls the execute() and isFinished() methods on each command. Notice that the apparent
concurrent execution is done without the use of threads or tasks which would add complexity to
the program. Each command simply has some code to execute (execute method) to move it
further along towards its goal and a method (isFinished) that determines if the command has
reached the goal. The execute and isFinished methods are just called repeatedly.

Command based programming

Page 9Command based programming Last Updated: 08-13-2019

Command groups

More complex commands can be built up from simpler commands. For example, shooting a disc
may be a long sequence of commands that are executed one after another. Maybe some of these
commands in the sequence can be executed concurrently. Command groups are commands, but
instead of having an isFinished and execute method, they have a list of other commands to
execute. This allows more complex operations to be built up out of simpler operations, a basic
principle in programming. Each of the individual smaller commands can be easily tested, the the
group can be tested. More information on command groups can be found in the Creating groups
of commands article.

Command based programming

Page 10Command based programming Last Updated: 08-13-2019

../../7952/l/80210?data-resolve-url=true&data-manual-id=7952
../../7952/l/80210?data-resolve-url=true&data-manual-id=7952

Creating a command
based robot project in

C++

Command based programming

Page 11Command based programming Last Updated: 08-13-2019

Installing the C++ Workbench plugin

This article is about command based programming in C++. If using Java, click here.

There is a plugin for Workbench that will make the creation and editing of command-based
robot programs much simpler. The plugin had built-in templates for various types of
commands, subsystems, and an overall robot program template. To use the plugin it must first
be installed from the internet.

Show Advanced Device Development Perspective

Show Advanced Device Development Perspective

Select Window -> Open Perspective then click Advanced Device Development to open the
perspective.

Install new software

Install new software

Select "Install new software..." from the Help menu in Workbench.

Select the plugin location

Select the plugin location

Select "http://first.wpi.edu/FRC/c/eclipse/update/" in the "Work with" text field and check the box
to the left of "FRC Cpp Development Tools" in the list of plugins. Click "Next>" and continue
through the dialog boxes accepting the terms of the license and the certificate if prompted. When
finished, allow Wind River Workbench to restart when prompted to do so.

Command based programming

Page 12Command based programming Last Updated: 08-13-2019

http://first.wpi.edu/FRC/c/eclipse/update/

Creating a robot project - C++

Create a command-based robot project by using one of the template projects that are
provided with the Wind River Workbench plugins.

Create the project

Create the project

Right-click in the project explorer window in some empty space. Select "New" then "Example...".

Selecting the project type

Selecting the project type

Select "VxWorks Downloadable Kernel Module Sample Project" from the "New Example" dialog
box and click "Next>".

Select the project example

Select the project example

Select the "FRC Command Based Robot Template" project example and click "Finish".

Observe sample project in the Project Explorer window

Observe sample project in the Project Explorer window

Command based programming

Page 13Command based programming Last Updated: 08-13-2019

Notice that the CommandBasedRobotTemplate project has been added to the other projects that
might have been in the Project Explorer window. There is a folder for Commands and another
folder for Subsystems.

Command based programming

Page 14Command based programming Last Updated: 08-13-2019

Adding Commands and Subsystems to the
project - C++

Commands and Subsystems each are created as classes in C++. The plugin has built-in
templates for both Commands and Subsystems to make it easier for you to add them to your
program.

Adding subsystems to the project

To add a subsystem, right-click on the project name and select "New" then "Subsystem" in the
drop down menu.

Command based programming

Page 15Command based programming Last Updated: 08-13-2019

Naming the subsystem

Naming the subsystem

Fill in a name for the subsystem. This will become the resultant class name for the subsystem so
the name has to be a valid C++ class name.

Subsystem created in project

Subsystem created in project

You can see the new subsystem created in the Subsystems folder in the project. To learn more
about creating subsystems, see the Simple Subsystems article.

Command based programming

Page 16Command based programming Last Updated: 08-13-2019

../..//l/80288?data-resolve-url=true&data-manual-id=7952

Adding a command to the project

A command can be created for the project using steps similar to creating a subsystem. First right-
click on the project name in the Project Explorer and select "New Command".

Set the command name

Set the command name

Enter the Command name into the "Desired Command Name" field in the dialog box. This will be
the class name for the Command so it must be a valid C++ name.

Command based programming

Page 17Command based programming Last Updated: 08-13-2019

Command created in the project

Command created in the project

You can see that the Command has been created in the Commands folder in the project in the
Project Explorer window. To learn more about creating commands, see the Creating Simple
Commands article.

Command based programming

Page 18Command based programming Last Updated: 08-13-2019

../..//l/80209?data-resolve-url=true&data-manual-id=7952
../..//l/80209?data-resolve-url=true&data-manual-id=7952

Creating a command
based robot project in

Java

Command based programming

Page 19Command based programming Last Updated: 08-13-2019

Creating a robot project - Java

This article is about command based programming in Java, if you are programming in C++ click
here to skip ahead to learning about subsytems.

Create a new project

Create the project in NetBeans by selecting File then New Project...

Command based programming

Page 20Command based programming Last Updated: 08-13-2019

Choose project type

Select the project type to create. In this case since we are creating a command based robot
project, select FRC Java for the category, then CommandBasedRobotTemplateProject from the list
of project types and select Next. All the base files will be automatically created for you.

Command based programming

Page 21Command based programming Last Updated: 08-13-2019

Name the project and set parameters for create

Here you can specify a project name and location where it will be stored. In addition you can
supply a name for the base robot class. The Package should be something that uniquely identifies
your team or organization. The package declaration qualifies all the code in the project so that
code could be shared between organizations without conflicts.

After you hit Finish, the project will be created.

Command based programming

Page 22Command based programming Last Updated: 08-13-2019

Adding Commands and Subsystems - Java

A newly created command based robot project will have a set of default files and packages
that were provided by the template. Using these files will make it easy to extend the default
program into a custom robot program for your application.

Adding subsystems

Add a new Subsystem class instance. Right-click on the subsystem package, and select New
Subsystem. If it is not there, then select New Other (as shown above), then select subsystem. In the
future, subsystem will be a choice on the New menu. Name the subsystem in the next dialog that
pops up and click Finish.

To learn more about defining subsystems, see the Simple Susbsystems article.

Command based programming

Page 23Command based programming Last Updated: 08-13-2019

../..//l/80288?data-resolve-url=true&data-manual-id=7952

Adding commands

The procedure to add commands is similar to adding subsystems (above), except select New
Command from the menu (or New Other...), then Command.

To learn more about creating commands, see the Creating Simple Commands article.

Command based programming

Page 24Command based programming Last Updated: 08-13-2019

../..//l/80209?data-resolve-url=true&data-manual-id=7952

Defining robot
subsystems

Command based programming

Page 25Command based programming Last Updated: 08-13-2019

Simple subsystems

Subsystems are the parts of your robot that are independently controller like collectors,
shooters, drive bases, elevators, arms, wrists, grippers, etc. Each subsystem is coded as an
instance of the Subsystem class. Subsystems should have methods that define the operation
of the actuators and sensors but not more complex behavior that happens over time.

Creating a subsystem

Creating a subsystem

This is an example of a fairly straightforward subsystem that operates a claw on a robot. The claw
mechanism has a single motor to open or close the claw and no sensors (not necessarily a good
idea in practice, but works for the example). The idea is that the open and close operations are
simply timed. There are three methods, open(), close(), and stop() that operate the claw motor.
Notice that there is not specific code that actually checks if the claw is opened or closed. The open
method gets the claw moving in the open direction and the close method gets the claw moving in
the close direction. Use a command to control the timing of this operation to make sure that the
claw opens and closes for a specific period of time.

Operating the claw with a command

Operating the claw with a command

Commands provide the timing of the subsystems operations. Each command would do a different
operation with the subsystem, the Claw in this case. The commands provides the timing for
opening or closing. Here is an example of a simple Command that controls the opening of the
claw. Notice that a timeout is set for this command (0.9 seconds) to time th e opening of the claw
and a check for the time in the isFinished() method. You can find more details in the section on
using Commands.

Command based programming

Page 26Command based programming Last Updated: 08-13-2019

../../7952/l/80209?data-resolve=true&data-manual-id=7952

PIDSubsystems for built-in PID control

If a mechanism uses a sensor for feedback then most often a PID controller will be used to
control the motor speed or position. Examples of subsystems that might use PID control are:
elevators with potentiometers to track the height, shooters with encoders to measure the
speed, wrists with potentiometers to measure the joint angle, etc.

There is a PIDController class built into WPILib, but to simplify its use for command based
programs there is a PIDSubsystem. A PIDSubsystem is a normal subsystem with the
PIDController built in and exposes the required methods for operation.

A PIDSubsystem to control the angle of a wrist joint

A PIDSubsystem to control the angle of a wrist joint

In this example you can see the basic elements of a PIDSubsystem for the wrist joint:

1. The Wrist subsystem extends PIDSubsystem.
2. The constructor passes a name for the subsystem and the P, I, and D constants that are used

when computing the motor output values.
3. The returnPIDInput() method is where you return the sensor value that is providing the

feedback for this subsystem. In this case it's a potentiometer connected to an AnalogChannel.
This method is called about every 20ms and is used for the PID output calculation.

4. The usePIDOutput method is where the computed output value from the PIDController is
applied to your motor. This method is called about every 20 ms to update the motor speed
based on the PID parameters from the constructor and the sensor value from the
returnPIDInput() method.

Command based programming

Page 27Command based programming Last Updated: 08-13-2019

Adding robot behaviors -
commands

Command based programming

Page 28Command based programming Last Updated: 08-13-2019

Creating Simple Commands

This article describes the basic format of a Command and walks through an example of
creating a command to drive your robot with Joysticks.

Basic Command Format

To implement a command, a number of methods are overridden from the WPILib Command class.
Most of the methods are boiler plate and can often be ignored, but are there for maximum
flexibility when you need it. There a number of parts to this basic command class:

1. Constructor - Might have parameters for this command such as target positions of devices.
Should also set the name of the command for debugging purposes. This will be used if the
status is viewed in the dashboard. And the command should require (reserve) any devices is
might use.

2. initialize() - This method sets up the command and is called immediately before the command
is executed for the first time and every subsequent time it is started . Any initialization code
should be here.

3. execute() - This method is called periodically (about every 20ms) and does the work of the
command. Sometimes, if there is a position a subsystem is moving to, the command might set
the target position for the subsystem in initialize() and have an empty execute() method.

Command based programming

Page 29Command based programming Last Updated: 08-13-2019

4. isFinished() - This method returns true if the command is finished. This would be the case if the
command has reached its target position, run for the set time, etc. There are other methods
that might be useful to override and these will be discussed in later sections

Simple Command Example

1. This example illustrates a simple command that will drive the robot using tank drive with values
provided by the joysticks. The elements we've used in this command:

2. requires(drivetrain) - "drivetrain" is an instance of our Drivetrain subsystem. The instance is
instantiated as static in Command Base so it can be referenced here. We need to require the
drivetrain system as this command uses it when it executes.

3. execute() - In our execute method we call a tankDrive method we have created in our
subsystem. This method takes two speeds as a parameter which we get from methods in the OI
class. These methods abstract the joystick objects so that if we want to change how we get the
speed later we can do so without modifying our commands (for example, if we want the
joysticks to be less sensitive, we can multiply them by .5 in the getLeftSpeed method and leave
our command the same).

Command based programming

Page 30Command based programming Last Updated: 08-13-2019

4. isFinished - Our isFinished method always returns false meaning this command never
completes on it's own. The reason we do this is that this command will be set as the default
command for the subsystem. This means that whenever the subsystem is not running another
command, it will run this command. If any other command is scheduled it will interrupt this
command, then return to this command when the other command completes. For more on
default commands see Default Commands.

Command based programming

Page 31Command based programming Last Updated: 08-13-2019

../../7952/l/129364?data-resolve-url=true&data-manual-id=7952

Creating groups of commands

Once you have created commands to operate the mechanisms in your robot, they can be
grouped together to get more complex operations. These groupings of commands are called
CommandGroups and are easily defined as shown in this article.

Creating a command to do a complex operation

Creating a command to do a complex operation

This is an example of a command group that places a soda can on a table. To accomplish this, (1)
the robot elevator must move to the "TABLE_HEIGHT", then (2) set the wrist angle, then (3) open
the claw. All of these tasks must run sequentially to make sure that the soda can isn't dropped.
The addSequential() method takes a command (or a command group) as a parameter and will
execute them one after another when this command is scheduled.

Running commands in parallel

Running commands in parallel

To make the program more efficient, often it is desirable to run multiple commands at the same
time. In this example, the robot is getting ready to grab a soda can. Since the robot isn't holding
anything, all the joints can move at the same time without worrying about dropping anything. Here
all the commands are run in parallel so all the motors are running at the same time and each
completes whenever the isFinished() method is called. The commands may complete out of order.
The steps are: (1) move the wrist to the pickup setpoint, then (2) move the elevator to the floor
pickup position, and (3) open the claw.

Command based programming

Page 32Command based programming Last Updated: 08-13-2019

Mixing parallel and sequential commands

Mixing parallel and sequential commands

Often there are some parts of a command group that must complete before other parts run. In
this example, a soda can is grabbed, then the elevator and wrist can move to their stowed
positions. In this case, the wrist and elevator have to wait until the can is grabbed, then they can
operate independently. The first command (1) CloseClaw grabs the soda and nothing else runs
until it is finished since it is sequential, then the (2) elevator and (3) wrist move at the same time.

Command based programming

Page 33Command based programming Last Updated: 08-13-2019

Running commands on Joystick input

You can cause commands to run when joystick buttons are pressed, released, or continuously
while the button is held down. This is extremely easy to do only requiring a few lines of code.

The OI Class

The command based template contains a class called OI, located in OI.java, where Operator
Interface behaviors are typically defined. If you are using RobotBuilder this file can be found in the
org.usfirst.frc####.NAME package

Create the Joystick object and JoystickButton objects

Create the Joystick object and JoystickButton objects

In this example there is a Joystick object connected as Joystick 1. Then 8 buttons are defined on
that joystick to control various aspects of the robot. This is especially useful for testing although
generating buttons on SmartDashboard is another alternative for testing commands.

Associate the buttons with commands

Associate the buttons with commands

In this example most of the joystick buttons from the previous code fragment are associated with
commands. When the associated button is pressed the command is run. This is an excellent way
to create a teleop program that has buttons to do particular actions.

Command based programming

Page 34Command based programming Last Updated: 08-13-2019

Other options
In addition to the "whenPressed()" condition showcased above, there are a few other conditions
you can use to link buttons to commands:

• Commands can run when a button is released by using whenReleased() instead of
whenPressed().

• Commands can run continuously while the button is depressed by calling whileHeld().
• Commands can be toggled when a button is pressed using toggleWhenPressed().
• A command can be canceled when a button is pressed using cancelWhenPressed().

Additionally commands can be triggered by arbitrary conditions of your choosing by using the
Trigger class instead of Button. Triggers (and Buttons) are usually polled every 20ms or whenever
the scheduler is called.

Command based programming

Page 35Command based programming Last Updated: 08-13-2019

Running commands during the autonomous
period

Once commands are defined they can run in either the teleop or autonomous part of the
program. In fact, the power of the command based programming approach is that you can
reuse the same commands in either place. If the robot has a command that can shoot Frisbees
during autonomous with camera aiming and accurate shooting, there is no reason not to use it
to help the drivers during the teleop period of the game.

Creating a command to use for Autonomous

Creating a command to use for Autonomous

Our robot must do the following tasks during the autonomous period: pick up a soda can off the
floor then drive a set distance from a table and deliver the can there. The process consists of:

1. Prepare to grab (move elevator, wrist, and gripper into position)
2. Grab the soda can
3. Drive to a distance from the table indicated by an ultrasonic rangefinder
4. Place the soda
5. Back off to a distance from the rangefinder
6. Re-stow the gripper

To do these tasks there are 6 command groups that are executed sequentially as shown in this
example.

Setting that command to run as the autonomous behavior

Setting that command to run as the autonomous behavior

To get the SodaDelivery command to run as the Autonomous program, (1) simply instantiate it in
the robotInit() method, (2) start it during the autonomousPeriodic() method, and (3) be sure the

Command based programming

Page 36Command based programming Last Updated: 08-13-2019

scheduler is called repeatedly during the teleopPeriodic() method. RobotInit() is called only once
when the robot starts so it is a good time to create the command instance. AutonomousPeriodic()
is called once at the start of the autonomous period so we schedule the command there.
AutonomousPeriodic() is called every 20ms so that is a good time to run the scheduler which
makes a pass through all the currently scheduled commands.

Command based programming

Page 37Command based programming Last Updated: 08-13-2019

Converting a Simple Autonomous program to
a Command based autonomous program

This document describes how to rewrite a simple autonomous into a command based
autonomous. Hopefully, going through this process will help those more familiar with the
older simple autonomous method understand the command based method better. By re-
writing it as a command based program, there are several benefits in terms of testing and
reuse. For this example, all of the logic is abstracted out into functions primarily so that the
focus of this example can be on the structure.

The initial autonomous code with loops

The initial autonomous code with loops

The code above aims a shooter, then it spins up a wheel and, finally, once the wheel is running at
the desired speed, it shoots the frisbee. The code consists of three distinct actions: aim, spin up to
speed and shoot the Frisbee. The first two actions follow a command pattern that consists of four
parts:

1. Initialization: Seen in lines 2 & 10, prepares for the action to be per- formed.

2. Condition: Seen in lines 3 & 11, keeps the loop going while it is satisfied.

3. Execution: Seen in lines 4 & 12, repeatedly updates the code to try to make the condition false.

4. End: Seen in lines 7 & 15, performs any cleanup and final task before moving on to the next
action.

The last action seen in line 18 only has an explicit initialize, though depending on how you read it,
it can implicitly end under a number of conditions. The most obvious one two in this case are
when it's done shooting or when autonomous has ended.

Command based programming

Page 38Command based programming Last Updated: 08-13-2019

Rewriting it as Commands

Rewriting it as Commands

The same code can be rewritten as a CommandGroup that groups the three actions, where each
action is written as it's own command. First, the command group will be written, then the
commands will be written to accomplish the three actions. This code is pretty straightforward. It
does the three actions sequentially, that is one after the other. Line 3 aims the robot, then line 4
spins the shooter

2up and, finally, line 5 actually shoots the frisbee. The addSequential() method sets it so that these
commands run one after the other.

The Aim command

The Aim command

As you can see, the command reflects the four parts of the action we discussed earlier. It also has
the interrupted() method which will be discussed below. The other significant difference is that the
condition in the isFinished() is the opposite of what you would put as the condition of the while
loop, it returns true when you want to stop running the execute method as opposed to false.
Initializing, executing and ending are exactly the same, they just go within their respective method
to indicate what they do.

SpinUpShooter command

SpinUpShooter command

The spin up shooter command is very similar to the Aim command, it's the same basic idea.

Shoot command

Shoot command

Command based programming

Page 39Command based programming Last Updated: 08-13-2019

The shoot command is the same basic transformation yet again, however it is set to end
immediately. In CommandBased programming, it is better to have it's isFinished method return
true when the act of shooting is finished, but this is a more direct translation of the original code.

Benefits of the command based approach
Why bother re-writing the code as CommandBased? Writing the code in the CommandBased style
offers a number of benefits:

• Re-Usability You can reuse the same command in teleop and multiple autonomous modes.
They all reference the same code, so if you need to tweak it to tune it or fix it, you can do it in
one place without having to make the same edits in multiple places.

• Testability You can test each part using tools such as the SmartDashboard to test parts of the
autonomous. Once you put them together, you'll have more confidence that each piece works
as desired.

• Parallelization If you wanted this code to aim and spin up the shooter at the same time, it's
trivial with CommandBased programming. Just use AddParallel() instead of AddSequential()
when adding the Aim command and now aiming and spinning up will happen simultaneously.

• Interruptibility Commands are interruptible, this provides the ability to exit a command early,
a task that is much harder in the equivalent while loop based code.

Command based programming

Page 40Command based programming Last Updated: 08-13-2019

Default Commands

In some cases you may have a subsystem which you want to always be running a command no
matter what. So what do you do when the command you are currently running ends? That's
where default commands come in.

What is the default command?
Each subsystem may, but is not required to, have a default command which is scheduled
whenever the subsystem is idle (the command currently requiring the system completes). The
most common example of a default command is a command for the drivetrain that implements
the normal joystick control. This command may be interrupted by other commands for specific
maneuvers ("precision mode", automatic alignment/targeting, etc.) but after any command
requiring the drivetrain completes the joystick command would be scheduled again.

Setting the default command

All subsystems should contain a method called initDefaultCommand() which is where you will set
the default command if desired. If you do not wish to have a default command, simply leave this
method blank. If you do wish to set a default command, call setDefaultCommand from within this
method, passing in the command to be set as the default.

Command based programming

Page 41Command based programming Last Updated: 08-13-2019

Connecting behaviors to
the operator interface

Command based programming

Page 42Command based programming Last Updated: 08-13-2019

Synchronizing two commands

Commands can be nested inside of command groups to create more complex commands. The
simpler commands can be added to the command groups to either run sequentially (each
command finishing before the next starts) or in parallel (the command is scheduled, and the
next command is immediately scheduled also). Occasionally there are times where you want
to make sure that two parallel command complete before moving onto the next command.
This article describes how to do that.

Creating a command group with sequential and parallel
commands

In this example some commands are added in parallel and others are added sequentially to the
CommandGroup CoopBridgeAutonomous (1). The first command "SetTipperState" is added and
completes before the SetVirtualSetpoint command starts (2). Before SetVirtualSetpoint command
completes, the DriveToBridge command is immediately scheduled because of the
SetVirtualSetpoint is added in parallel (3). This example might give you an idea of how commands
are scheduled.

Command based programming

Page 43Command based programming Last Updated: 08-13-2019

Example Flowchart

Here is the code shown above represented as a flowchart. Note that there is no dependency
coming from the commands scheduled using "Add Parallel" either or both of these commands
could still be running when the MoveBallToShooter command is reached. Any command in the
main sequence (the sequence on the right here) that requires a subsystem in use by a parallel
command will cause the parallel command to be canceled. For example, if the FireSequence
required a subsystem in use by SetVirtualSetpoint, the SetVirtualSetpoint command will be
canceled when FireSequence is scheduled.

Command based programming

Page 44Command based programming Last Updated: 08-13-2019

Getting a command to wait for another command to
complete

If there are two commands that need to complete before the following commands are scheduled,
they can be put into a command group by themselves, adding both in parallel. Then that
command group can be scheduled sequentially from an enclosing command group. When a
command group is scheduled sequentially, the commands inside it will all finish before the next
outer command is scheduled. In this way you can be sure that an action consisting of multiple
parallel commands has completed before going on to the next command.

In this example you can see that the addition of a command group "Move to Bridge" containing
the Set Virtual Setpoint and Drive to Bridge commands forces both to complete before the next
commands are scheduled.

Command based programming

Page 45Command based programming Last Updated: 08-13-2019

	Command based programming
	What is Command based programming?
	Commands and subsystems
	How commands work
	Concurrency
	How It Works - Scheduling Commands
	How It Works - Running Commands
	Command groups

	Creating a command based robot project in C++
	Installing the C++ Workbench plugin
	Show Advanced Device Development Perspective
	Install new software
	Select the plugin location

	Creating a robot project - C++
	Create the project
	Selecting the project type
	Select the project example
	Observe sample project in the Project Explorer window

	Adding Commands and Subsystems to the project - C++
	Adding subsystems to the project
	Naming the subsystem
	Subsystem created in project
	Adding a command to the project
	Set the command name
	Command created in the project

	Creating a command based robot project in Java
	Creating a robot project - Java
	Create a new project
	Choose project type
	Name the project and set parameters for create

	Adding Commands and Subsystems - Java
	Adding subsystems
	Adding commands

	Defining robot subsystems
	Simple subsystems
	Creating a subsystem
	Operating the claw with a command

	PIDSubsystems for built-in PID control
	A PIDSubsystem to control the angle of a wrist joint

	Adding robot behaviors - commands
	Creating Simple Commands
	Basic Command Format
	Simple Command Example

	Creating groups of commands
	Creating a command to do a complex operation
	Running commands in parallel
	Mixing parallel and sequential commands

	Running commands on Joystick input
	The OI Class
	Create the Joystick object and JoystickButton objects
	Associate the buttons with commands
	Other options

	Running commands during the autonomous period
	Creating a command to use for Autonomous
	Setting that command to run as the autonomous behavior

	Converting a Simple Autonomous program to a Command based autonomous program
	The initial autonomous code with loops
	Rewriting it as Commands
	The Aim command
	SpinUpShooter command
	Shoot command
	Benefits of the command based approach

	Default Commands
	What is the default command?
	Setting the default command

	Connecting behaviors to the operator interface
	Synchronizing two commands
	Creating a command group with sequential and parallel commands
	Example Flowchart
	Getting a command to wait for another command to complete

