
WPILIB PROGRAMMING

Last Updated: 08-29-2019

Table of Contents

Basic WPILib Programming features ..4
What is WPILib ..5

Choosing a Base Class ...7

Sending data from the cRIO to an Arduino ... 10

Getting your robot to drive with the RobotDrive class .. 13

Using actuators (motors, servos, and relays) 16
Actuator Overview .. 17

Driving motors with speed controller objects (Victors, Talons and Jaguars) 18

Repeatable Low Power Movement - Controlling Servos with WPILib 21

Composite controllers - RobotDrive ... 22

Driving a robot using Mecanum drive .. 25

Using the motor safety feature ... 28

On/Off control of motors and other mechanisms - Relays 30

Operating a compressor for pneumatics .. 32

Operating pneumatic cylinders - Solenoids .. 33

WPILib sensors ... 35
Using limit switches to control behavior .. 36

WPILib Sensor Overview .. 41

Accelerometers - measuring acceleration and tilt .. 42

Gyros to control robot driving direction .. 46

Determine robot orientation with a compass ... 49

Measuring robot distance to a surface using Ultrasonic sensors 50

WPILib programming

Using Counters .. 54

Measuring rotation of a wheel or other shaft using encoders 59

Analog inputs .. 64

Potentiometers to measure joint angle or linear motion 69

Analog triggers .. 70

Operating the robot with feedback from sensors (PID control) 73

Driver Station Inputs and Feedback .. 77
Driver Station Input Overview ... 78

Joysticks .. 82

Custom IO - Cypress FirstTouch Module ... 87

Displaying Data on the DS - Dashboard Overview ... 91

Robot to driver station networking ... 92
Writing a simple NetworkTables program in C++ and Java with a Java client (PC
side) .. 93

Using TableViewer to see NetworkTable values ... 98

Using NetworkTables with RoboRealm .. 100

WPILib programming

Basic WPILib
Programming features

WPILib programming

Page 4WPILib programming Last Updated: 08-29-2019

What is WPILib

The WPI Robotics library (WPILib) is a set of software classes that interfaces with the hardware
and software in your FRC robot’s control system. There are classes to handle sensors, motor
speed controllers, the driver station, and a number of other utility functions such as timing
and field management. In addition, WPILib supports many commonly used sensors that are
not in the kit, such as ultrasonic rangefinders.

What's included in the library

What's included in the library

There are three versions of the library, one for each supported language. This document
specifically deals with the text-based languages, C++ and Java. There is considerable effort to keep
the APIs for Java and C++ very similar with class names and method names being the same. There
are some differences that reflect language differences such as pointers vs. references, name case
conventions, and some minor differences in functionality. These languages were chosen because
they represent a good level of abstraction for robot programs than previously used languages. The
WPI Robotics Library is designed for maximum extensibility and software reuse with these
languages.

WPILib has a generalized set of features, such as general-purpose counters, to provide support for
custom hardware and devices. The FPGA hardware also allows for interrupt processing to be
dispatched at the task level, instead of as kernel interrupt handlers, reducing the complexity of
many common real-time issues.

Fundamentally, C++ offers the highest performance possible for your robot programs. Java on the
other hand has acceptable performance and includes extensive run-time checking of your
program to make it much easier to debug and detect errors. Those with extensive programming
experience can probably make their own choices, and beginning might do better with Java to take
advantage of the ease of use.

There is a detailed list of the differences between C++ and Java on Wikipedia available here. Below
is a summary of the differences that will most likely effect robot programs created with WPILib.

WPILib programming

Page 5WPILib programming Last Updated: 08-29-2019

http://en.wikipedia.org/wiki/Comparison_of_Java_and_C++

Java programming with WPILib

Java programming with WPILib

• Java objects must be allocated manually, but are freed automatically when no references
remain.

• References to objects instead of pointers are used. All objects must be allocated with the new
operator and are referenced using the dot (.) operator (e.g. gyro.getAngle()).

• Header files are not necessary and references are automatically resolved as the program is
built.

• Only single inheritance is supported, but interfaces are added to Java to get most of the
benefits that multiple inheritance provides.

• Checks for array subscripts out of bounds, uninitialized references to objects and other runtime
errors that might occur in program development.

• Compiles to byte code for a virtual machine, and must be interpreted.

C++ programming with WPILib

C++ programming with WPILib

• Memory allocated and freed manually.
• Pointers, references, and local instances of objects.
• Header files and preprocessor used for including declarations in necessary parts of the

program.
• Implements multiple inheritance where a class can be derived from several other classes,

combining the behavior of all the base classes.
• Does not natively check for many common runtime errors.
• Highest performance on the platform, because it compiles directly to machine code for the

PowerPC processor in the cRIO.

WPILib programming

Page 6WPILib programming Last Updated: 08-29-2019

Choosing a Base Class

The base class is the framework that the robot code is constructed on top of. WPILib offers
two different base classes, as well as a third option which is not technically a separate base
class.

Simple Robot

The SimpleRobot class is the simplest to understand as most of the state flow is directly visible in
your program. Your robot program overrides the operatorControl() and autonomous() methods
that are called by the base at the appropriate time. Note that these methods are called only called
once each time the robot enters the appropriate mode and are not automatically terminated. Your
code in the operatorControl method must contain a loop that checks the robot mode in order to

WPILib programming

Page 7WPILib programming Last Updated: 08-29-2019

keep running and taking new input from the Driver Station. The autonomous code shown uses a
similar loop.

Iterative Robot

The Iterative Robot base class assists with the most common code structure by handling the state
transitions and looping in the base class instead of in the robot code. For each state (autonomous,
teleop, disabled, test) there are two methods that are called:

• Init methods - The init method for a given state is called each time the corresponding state is
entered (for example, a transition from disabled to teleop will call teleopInit()). Any initialization
code or resetting of variables between modes should be placed here.

• Periodic methods - The periodic method for a given state is called each time the robot receives
a Driver Station packet in the corresponding state, approximately every 20ms. This means that
all of the code placed in each periodic method should finish executing in 20ms or less. The idea
is to put code here that gets values from the driver station and updates the motors. You can
read the joysticks and other driverstation inputs more often, but you’ll only get the previous
value until a new update is received. By synchronizing with the received updates your program

WPILib programming

Page 8WPILib programming Last Updated: 08-29-2019

will put less of a load on the cRIO CPU leaving more time for other tasks such as camera
processing.

Command Based Robot
While not strictly a base class, the Command based robot model is a method for creating larger
programs, more easily, that are easier to extend. There is built in support with a number of classes
to make it easy to design your robot, build subsystems, and control interactions between the robot
and the operator interface. In addition it provides a simple mechanism for writing autonomous
programs. The command based model is described in detail in the Command Based Programming
manual.

WPILib programming

Page 9WPILib programming Last Updated: 08-29-2019

../../7952/l/?data-resolve-url=true&data-manual-id=7952
../../7952/l/?data-resolve-url=true&data-manual-id=7952

Sending data from the cRIO to an Arduino

Sometimes it is useful to use a coprocessor to handle operations on some sensors, lights, etc.
A popular processor is the Arduino. This article shows sample code to send some data
between the cRIO and an Arduino. Although it only sends data in one direction (from the cRIO
to the Arduino), it serves as an example of how to do it.

This program sends one of two values (either 72 or 76) from the cRIO to either turn the LED
(pin 13 on the Arduino) either on or off. The value is arbitrary and was just part of a larger
sample program.

The cRIO program

WPILib programming

Page 10WPILib programming Last Updated: 08-29-2019

The I2C protocol has a master and slave processors or devices. The master controls the bus and
either sends data to a slave or requests data from a slave processor. Slaves cannot initiate
transactions on their own. Each slave processor (or device) has a unique address that the master
processor uses to select it. In this example, the Arduino slave processor recognizes address 84.
The steps are:

1. Initialize the I2C connection on address 84. Because of differences between the
implementation of the library for the cRIO and Arduino (the lower bit of the address selects
either read or write) the cRIO uses address 168. 168 is the address 84 shifted by 1 bit (the read/
write bit).

2. Use a byte array to fill with the data to send. In this case it's a single byte, either 76 or 72 that
sets the light on or off on the Arduino.

3. Send the data to the Arduino without receiving any data. The parameters "toSend" and "1"
specify a single byte from the "toSend" array. The second set of parameters (null and 0) would
be a byte array and length if the master was expecting the slave to respond with some data.

The Arduino program

The Arduino program:

WPILib programming

Page 11WPILib programming Last Updated: 08-29-2019

1. Sets up an interrupt handler to receive inbound requests as address 84
2. Reads the data turning the light on or off depending on the value.

The results

A few observations:

1. The timing using Timer.delay() on the cRIO wasn't very precise - likely due to randomness in the
Java scheduler and getting the thread restarted. You can see that between transactions.

2. The program didn't work reliably with an Arduino Uno and seems to work correctly with a
Mega. You can see the output of each transaction with the trace from the logic analyzer.

WPILib programming

Page 12WPILib programming Last Updated: 08-29-2019

Getting your robot to drive with the
RobotDrive class

WPILib provides a RobotDrive object that handles most cases of driving the robot either in
autonomous or teleop modes. It is created with either two or four speed controller objects.
There are methods to drive with either Tank, Arcade, or Mecanum modes either
programmatically or directly from Joysticks.

Note: the examples illustrated in this section are generally correct but have not all been tested on
actual robots. But should serve as a starting point for your projects.

Creating a RobotDrive object with Jaguar speed controllers

Creating a RobotDrive object with Jaguar speed controllers

Create the RobotDrive object specifying either two or four motor ports. By default the RobotDrive
constructor will create Jaguar class instances attached to each of those ports.

Using other types of speed controllers

Using other types of speed controllers

You can use RobotDrive with other types of speed controllers as well. In this case you must create
the speed controller objects manually and pass the references or pointers to the RobotDrive
constructor.

These are Java programs but the C++ program is very similar.

WPILib programming

Page 13WPILib programming Last Updated: 08-29-2019

Tank driving with two joysticks

Tank driving with two joysticks

In this example a RobotDrive object is created with 4 default Jaguar speed controllers. In the
operatorControl method the RobotDrive instance tankDrive method is called and it will select the
Y-axis of each of the joysticks by default. There are other versions of the tankDrive method that
can be used to use alternate axis or just numeric values.

Arcade driving with a single joystick

Arcade driving with a single joystick

Similar to the example above a single joystick can be used to do single-joystick driving (called
arcade). In this case, the X-axis is selected by default for the turn axis and the Y-axis is selected for
the speed axis.

Autonomous driving using the RobotDrive object

Autonomous driving using the RobotDrive object

The RobotDrive object also has a number of features that makes it ideally suited for autonomous
control. This example illustrates using a gyro for driving in a straight line (the current heading)
using the arcade method for steering. While the robot continues to drive in a straight line the gyro
headings are roughly zero. As the robot veers off in one direction or the other, the gyro headings
vary either positive or negative. This is very convenient since the arcade method turn parameter is
also either positive or negative. The magnitude of the gyro headings sets the rate of the turn, that
is more off zero the gyro heading is, the faster the robot should turn to correct.

This is a perfect use of proportional control where the rate of turn is proportional to the gyro
heading (being off zero). The heading is in values of degrees and can easily get pretty far off,
possibly as much as 10 degrees as the robot drives. But the values for the turn in the arcade
method are from zero to one. To solve this problem, the heading is scaled by a constant to get it in
the range required by the turn parameter of the arcade method. This parameter is called the
proportional gain, often written as kP.

WPILib programming

Page 14WPILib programming Last Updated: 08-29-2019

In this particular example the robot is designed such that negative speed values go forward. Also,
not that the the angle from the gyro is written as "-angle". This is because this particular robot
turns in the opposite direction from the gyro corrections and has to be negated to correct that.
Your robot might be different in both cases depending on gearing and motor connections.

Mecanum driving

The RobotDrive can also handle Mecanum driving. That is using Mecanum wheels on the chassis to
enable the robot to drive in any direction without first turning. This is sometimes called Holonomic
driving.

In this example there are two joysticks controlling the robot. moveStick supplies the direction
vector for the robot, that is which way it should move irrespective of the heading. rotateStick
supplies the rate of rotation in the twist (rudder) axis on the joystick. If you push the moveStick full
forward the robot will move forward, even if it's facing to the left. At the same time, if you rotate
the rotateStick, the robot will spin in the rotation direction with the rotation rate from the amount
of twist, while the robot continues to move forward.

WPILib programming

Page 15WPILib programming Last Updated: 08-29-2019

Using actuators (motors,
servos, and relays)

WPILib programming

Page 16WPILib programming Last Updated: 08-29-2019

Actuator Overview

This section discusses the control of motors and pneumatics through speed controllers, relays,
and WPILib methods.

Types of actuators

The chart shown above outlines the types of actuators which can be controlled through WPILib.
The articles in this section will cover each of these types of actuators and the WPILib methods and
classes that control them.

WPILib programming

Page 17WPILib programming Last Updated: 08-29-2019

Driving motors with speed controller objects
(Victors, Talons and Jaguars)

The WPI Robotics library has extensive support for motor control. There are a number of
classes that represent different types of speed controllers and servos. The WPI Robotics
Library currently supports two classes of speed controllers, PWM based motor controllers
(Jaguars, Victors and Talons) and CAN based motor controllers (Jaguar). WPILIb also contains a
composite class called RobotDrive which allows you to control multiple motors with a single
object. This article will cover the details of PWM motor controllers, CAN controllers and
RobotDrive will be covered in separate articles.

PWM Controllers, brief theory of operation
The acronym PWM stands for Pulse Width Modulation. For the Victor, Talon and Jaguar (using the
PWM input) motor controllers, PWM can refer to both the input signal and the method the
controller uses to control motor speed. To control the speed of the motor the controller must vary
the perceived input voltage of the motor. To do this the controller switches the full input voltage
on and off very quickly, varying the amount of time it is on based on the control signal. Because of
the mechanical and electrical time constants of the types of motors used in FRC this rapid
switching produces an effect equivalent to that of applying a fixed lower voltage (50% switching
produces the same effect as applying ~6V).

The PWM signal the controllers use for an input is a little bit different. Even at the bounds of the
signal range (max forward or max reverse) the signal never approaches a duty cycle of 0% or
100%. Instead the controllers use a signal with a period of either 5ms or 10ms and a midpoint of
1.5ms. The Talon and Victor controllers use typical hobby RC controller timing of 1ms to 2ms and
the Jaguar uses and expanded timing of ~.7ms to ~2.3ms.

Raw vs Scaled output values
In general, all of the motor controller classes in WPILib are set up to take a scaled -1.0 to 1.0 value
as the output to an actuator. The PWM module in the FPGA is capable of generating PWM signals

WPILib programming

Page 18WPILib programming Last Updated: 08-29-2019

with periods of 5, 10 or 20ms and can vary the pulse width in 255 steps of ~.0065ms each around
the midpoint. The raw values sent to this module are in this 0-255 range with 0 being a special case
which holds the signal low (disabled). The class for each motor controller contains information
about what the typical bound values (min, max and each side of the deadband) are as well as the
typical midpoint. WPILib can then use these values to map the scaled value into the proper range
for the motor controller. This allows for the code to switch seamlessly between different types of
controllers and abstracts out the details of the specific signaling.

Calibrating Speed Controllers
So if WPILib handles all this scaling, why would you ever need to calibrate your speed controller?
The values WPILib uses for scaling are approximate based on measurement of a number of
samples of each controller type. Due to a variety of factors the timing of an individual speed
controller may vary slightly. In order to definitively eliminate "humming" (midpoint signal
interpreted as slight movement in one direction) and drive the controller all the way to each
extreme calibrating the controllers is still recommended. In general, the calibration procedure for
each controller involves putting the controller into calibration mode then driving the input signal to
each extreme, then back to the midpoint. Precise details for each controller can be found in the
User Guides: Talon, Jaguar, Victor.

PWM and Safe PWM Classes
PWM

The PWM class is the base class for devices that operate on PWM signals and is the connection to
the PWM signal generation hardware in the cRIO. It is not intended to be used directly on a speed
controller or servo. The PWM class has shared code for Victor, Jaguar, Talon, and Servo subclasses
that set the update rate, deadband elimination, and profile shaping of the output.

Safe PWM

The SafePWM class is a subclass of PWM that implements the RobotSafety interface and adds
watchdog capability to each speed controller object. The RobotSafety interface will be discussed
further in the next article.

WPILib programming

Page 19WPILib programming Last Updated: 08-29-2019

http://www.crosstheroadelectronics.com/Talon_User_Manual_1_3.pdf
http://content.vexrobotics.com/docs/217-3367-VEXpro_Jaguar_GettingStartedGuide_20130215.pdf
http://content.vexrobotics.com/vexpro/pdf/217-2769-Victor888UserManual_20130118.pdf

Constructing a Speed Controller object

Speed controller objects are constructed by passing in either a channel (default module) or a
channel and module. No other parameters are passed into the constructor.

Setting parameters

All of the settable parameters of the motor controllers inherit from the underlying PWM class and
are thus identical across the controllers. The code above shows only a single controller type (Talon)
as an example. There are a number of settable parameters of a PWM object, but only one is
recommended for robot code to modify directly:

• Deadband Elimination - Set to true to have the scaling algorithms eliminate the controller
deadband. Set to false (default) to leave the controller deadband intact.

Setting Speed

As noted previously, speed controller objects take a single speed parameter varying from -1.0 (full
reverse) to +1.0 (full forward).

WPILib programming

Page 20WPILib programming Last Updated: 08-29-2019

Repeatable Low Power Movement -
Controlling Servos with WPILib

Servo motors are a type of motor which integrates positional feedback into the motor in order
to allow a single motor to perform repeatable, controllable movement, taking position as the
input signal. WPILib provides the capability to control servos which match the common hobby
input specification (PWM signal, 1.0ms-2.0ms pulse width)

Constructing a Servo object

A servo object is constructed by passing either a channel (default module) or module and channel.

Setting Servo Values

There are two methods of setting servo values in WPILib:

• Scaled Value - Sets the servo position using a scaled 0 to 1.0 value. 0 corresponds to one
extreme of the servo and 1.0 corresponds to the other

• Angle - Set the servo position by specifying the angle, in degrees. This method will work for
servos with the same range as the Hitec HS-322HD servo (0 to 170 degrees). Any values passed
to this method outside the specified range will be coerced to the boundary.

WPILib programming

Page 21WPILib programming Last Updated: 08-29-2019

Composite controllers - RobotDrive

The RobotDrive class is designed to simplify the operation of the drive motors based on a
model of the drive train configuration. The program describes the layout of the motors. Then
the class can generate all the speed values to operate the motors for different configurations.
For cases that fit the model, it provides a significant simplification to standard driving code. For
more complex cases that aren’t directly supported by the RobotDrive class it may be
subclassed to add additional features or not used at all.

Create a RobotDrive object with 2 motors

Create a RobotDrive object with 2 motors

First, create a RobotDrive object specifying the left and right Jaguar motor controllers on the
robot, as shown.

Creating a RobotDrive object with 4 motors

Creating a RobotDrive object with 4 motors

In this case, for a four motor drive all the motors are specified in the constructor.

Creating a RobotDrive object using speed controllers that are
already created
By default, the RobotDrive object created with port numbers as shown in the previous two
examples will allocate Jaguar speed controller objects for each of the motors. If the RobotDrive
object creates the speed controllers, then it will also be responsible for deleting them when the
RobotDrive object is deleted.

WPILib programming

Page 22WPILib programming Last Updated: 08-29-2019

In some case (as shown here) you might want to be in control of the speed controller objects, for
example, at times your program might have a need to operate them independently from the
RobotDrive object. Another case is if your robot is not using Jaguar speed controllers. In this case,
allocate the desired speed controller objects and pass them as parameters to the constructor.
Your program will be responsible for deleting the objects when you are done using them.

Operating the motors of the RobotDrive
Once set up, there are methods that can help with driving the robot either from the Driver Station
controls or through programmed operations. These methods are described in the table below.

Drive(speed, turn) - Designed to take speed and turn values ranging from - 1.0 to 1.0. The speed
values set the robot overall drive speed; with positive values representing forward and negative
values representing backwards. The turn value tries to specify constant radius turns for any drive
speed. Negative values represent left turns and the positive values represent right turns.

TankDrive(leftStick, rightStick) - Takes two joysticks and controls the robot with tank steering
using the y-axis of each joystick. There are also methods that allow you to specify which axis is
used from each stick.

ArcadeDrive(stick) - Takes a joystick and controls the robot with arcade (single stick) steering
using the y-axis of the joystick for forward/backward speed and the x-axis of the joystick for turns.
There are also other methods that allow you to specify different joystick axes.

HolonomicDrive(magnitud e, direction, rotation) - Takes floating point values, the first two are
a direction vector the robot should drive in. The third parameter, rotation, is the independent rate
of rotation while the robot is driving. This is intended for robots with 4 Mecanum wheels
independently controlled.

SetLeftRightMotorSpeeds (leftSpeed, rightSpeed) - Takes two values for the left and right motor
speeds. As with all the other methods, this will control the motors as defined by the constructor.

Inverting the sense of some of the motors

Inverting the sense of some of the motors

It might turn out that some of the motors used in your RobotDrive object turn in the opposite
direction. This often happens depending on the gearing of the motor and the rest of the drive

WPILib programming

Page 23WPILib programming Last Updated: 08-29-2019

train. If this happens, you can use the SetInvertedMotor() method, as shown, to reverse a
particular motor.

WPILib programming

Page 24WPILib programming Last Updated: 08-29-2019

Driving a robot using Mecanum drive

Mecanum drive is a method of driving using specially designed wheels that allow the robot to
drive in any direction without changing the orientation of the robot. A robot with a
conventional drivetrain (4 or six wheels) must turn in the direction it needs to drive. A
mecanum robot can move in any direction without first turning and is called a holonomic
drive.

Mecanum wheels

The wheels shown in this robot have rollers that cause the forces from driving to be applied at a 45
degree angle rather than straight forward as in the case of a conventional drive. You might guess
that varying the speed of the wheels results in travel in any direction. You can look up how
mecanum wheels work on various web sites on the internet.

WPILib programming

Page 25WPILib programming Last Updated: 08-29-2019

Code for driving with mecanum wheels

#include "WPILib.h"
/**
 * Simplest program to drive a robot with mecanum drive using a single Logitech
 * Extreme 3D Pro joystick and 4 drive motors connected as follows:
 * - Digital Sidecar 1:
 * - PWM 1 - Connected to front left drive motor
 * - PWM 2 - Connected to rear left drive motor
 * - PWM 3 - Connected to front right drive motor
 * - PWM 4 - Connected to rear right drive motor
 */
class MecanumDefaultCode : public IterativeRobot
{
 RobotDrive *m_robotDrive; // RobotDrive object using PWM 1-4 for
drive motors
 Joystick *m_driveStick; // Joystick object on USB port 1
(mecanum drive)
public:
 /**
 * Constructor for this "MecanumDefaultCode" Class.
 */
 MecanumDefaultCode(void)
 {
 // Create a RobotDrive object using PWMS 1, 2, 3, and 4
 m_robotDrive = new RobotDrive(1, 2, 3, 4);
 // Define joystick being used at USB port #1 on the Drivers Station
 m_driveStick = new Joystick(1);
 // Twist is on Axis 3 for the Extreme 3D Pro
 m_driveStick->SetAxisChannel(Joystick::kTwistAxis, 3);
 }
 /**
 * Gets called once for each new packet from the DS.
 */
 void TeleopPeriodic(void)
 {
 m_robotDrive->MecanumDrive_Cartesian(m_driveStick->GetX(), m_driveStick-
>GetY(), m_driveStick->GetTwist());

WPILib programming

Page 26WPILib programming Last Updated: 08-29-2019

 }
};
START_ROBOT_CLASS(MecanumDefaultCode);

Here's a sample program that shows the minimum code to drive using a single joystick and
mecanum wheels. It uses the RobotDrive object that is available in both C++ and Java so even
though this example is in C++ similar code will work in Java. The idea is to create the RobotDrive
object with 4 PWM ports for the 4 speed controllers on the robot. The joystick XY position
represents a direction vector that the robot should follow regardless of its orientation. The twist
axis on the joystick represents the rate of rotation for the robot while it's driving.

Thanks to FRC Team 2468 in Austin, TX for developing this example.

Updating the program for field-oriented driving
I would be remiss in not mentioning that is a 4th parameter to the MecanumDrive_Cartesian()
method that is the angle returned from a Gyro sensor. This will adjust the rotation value supplied,
in this case, from the twist axis of the joystick to be relative to the field rather than relative to the
robot. This is particularly useful with mecanum drive since, for the purposes of steering, the robot
really has no front, back or sides. It can go in any direction. Adding the angle in degrees from a
gyro object will cause the robot to move away from the drivers when the joystick is pushed
forwards, and towards the drivers when it is pulled towards them - regardless of what direction
the robot is facing!

The use of field-oriented driving makes often makes the robot much easier to drive, especially
compared to a "robot-oriented" drive system where the controls are reversed when the robot is
facing the drivers.

Just remember to get the gyro angle each time MecanumDrive_Caresian() is called.

WPILib programming

Page 27WPILib programming Last Updated: 08-29-2019

Using the motor safety feature

Motor Safety is a mechanism in WPILib that takes the concept of a watchdog and breaks it out
into one watchdog (Motro Safety timer) for each individual actuator. Note that this protection
mechanism is in addition to the System Watchdog which is controlled by the Network
Communications code and the FPGA and will disable all actuator outputs if it does not receive
a valid data packet for 125ms.

Motor Safety Purpose
The purpose of the Motor Safety mechanism is the same as the purpose of a watchdog timer, to
disable mechanisms which may cause harm to themselves, people or property if the code locks up
and does not properly update the actuator output. Motor Safety breaks this concept out on a per
actuator basis so that you can appropriately determine where it is necessary and where it is not.
Examples of mechanisms that should have motor safety enabled are systems like drive trains and
arms. If these systems get latched on a particular value they could cause damage to their
environment or themselves. An example of a mechanism that may not need motor safety is a
spinning flywheel for a shooter. If this mechanism gets latched on a particular value it will simply
continue spinning until the robot is disabled. By default Motor Safety is enabled for RobotDrive
objects and disabled for all other speed controllers and servos.

Motor Safety Operation
The Motor Safety feature operates by maintaining a timer that tracks how long it has been since
the feed() method has been called for that actuator. Code in the Driver Station class initiates a
comparison of these timers to the timeout values for any actuator with safety enabled every 5
received packets (100ms nominal). The set() methods of each speed controller class and the set()
and setAngle() methods of the servo class call feed() to indicate that the output of the actuator has
been updated.

WPILib programming

Page 28WPILib programming Last Updated: 08-29-2019

Enabling/Disabling Motor Safety

Motor safety can be enabled or disabled on a given actuator, potentially even dynamically within a
program. However, if you determine a mechanism should be protected by motor safety, it is likely
that it should be protected all the time.

Configuring the Safety timeout

Depending on the mechanism and the structure of your program, you may wish to configure the
timeout length of the motor safety (in seconds). The timeout length is configured on a per actuator
basis and is not a global setting. The default (and minimum useful) value is 100ms.

WPILib programming

Page 29WPILib programming Last Updated: 08-29-2019

On/Off control of motors and other
mechanisms - Relays

For On/Off control of motors or other mechanisms such as solenoids, lights or other custom
circuits, WPILib has built in support for relay outputs designed to interface to the Spike H-
Bridge Relay from VEX Robotics. These devices utilize a 3-pin output (GND, forward, reverse) to
independently control the state of two relays connected in an H-Bridge configuration. This
allows the relay to provide power to the outputs in either polarity or turn both outputs on at
the same time.

Relay connection overview
The cRIO provides the connections necessary to wire IFI spikes via the relay outputs on the digital
breakout board. The breakout board provides a total of sixteen outputs, eight forward and eight
reverse. The forward output signal is sent over the pin farthest from the edge of the breakout
board, labeled as output A, while the reverse signal output is sent over the center pin, labeled
output B. The final pin is a ground connection.

Relay Directions in WPILib
Within WPILib relays can be set to kBothDirections (reversible motor or two direction solenoid),
kForwardOnly (uses only the forward pin), or kReverseOnly (uses only the reverse pin). If a value is
not input for direction, it defaults to kBothDirections . This determines which methods in the Relay
class can be used with a particular instance.

WPILib programming

Page 30WPILib programming Last Updated: 08-29-2019

Setting Relay Directions

Relay state is set using the set() method. The method takes as a parameter an enumeration with
the following values:

• kOff - Turns both relay outputs off
• kForward - Sets the relay to forward (M+ @ 12V, M- @ GND)
• kReverse - Sets the relay to reverse (M+ @ GND, M- @ 12V)
• KOn - Sets both relay outputs on (M+ @ 12V, M- @ 12V). Note that if the relay direction is set

such that only the forward or reverse pins are enabled this method will be equivalent to
kForward or kReverse, however it is not recommended to use kOn in this manner as it may lead
to confusion if the relay is later changed to use kBothDirections. Using kForward and kReverse
is unambiguous regardless of the direction setting.

WPILib programming

Page 31WPILib programming Last Updated: 08-29-2019

Operating a compressor for pneumatics

The Compressor class is designed to operate any FRC supplied compressor on the robot. A
Compressor object is constructed with 2 input/output ports:

• The Digital Relay output port connected to the Spike relay that controls the power to the
compressor. (A digital output or Solenoid module port alone doesn’t supply enough current to
operate the compressor.)

• The Digital input port connected to the pressure switch that monitors the accumulator
pressure.

The Compressor class will automatically create a task that runs in the background and twice a
second turns the compressor on or off based on the pressure switch value. If the system
pressure is above the high set point of the switch, the compressor turns off. If the pressure is
below the low set point, the compressor turns on.

Starting the compressor

Starting the compressor

To use the Compressor class create an instance of the Compressor object and use the Start()
method. This is typically done in the constructor for your Robot Program. Once started, it will
continue to run on its own with no further programming necessary. If you do have an application
where the compressor should be turned off, possibly during some particular phase of the game
play, you can stop and restart the compressor using the Stop() and Start() methods.

The compressor class will create instances of the DigitalInput and Relay objects internally to read
the pressure switch and operate the Spike relay.

Shown in the example is some C++ code that implements a compressor with a Spike relay
connected to Relay port 2 and the pressure switch connected to digital input port 4. Both of these
ports are connected to the primary digital input module.

WPILib programming

Page 32WPILib programming Last Updated: 08-29-2019

Operating pneumatic cylinders - Solenoids

There are two ways to connect and operate pneumatic solenoid valves to trigger pneumatic
cylinder movement using the current control system. One option is to hook the solenoids up
to a Spike relay; to learn how to utilize solenoids connected in this manner in code see the
article on Relays. The second option is to connect the solenoids to a solenoid breakout board
on top of a NI 9472 Digital Sourcing module in the cRIO (slot 3). To use these solenoids in code,
use the WPILib "Solenoid" and/or "Double Solenoid" classes, detailed below.

Solenoid Overview
The pneumatic solenoid valves used in FRC are internally piloted valves. For more details on the
operation of internally piloted solenoid valves, see this Wikipedia article. One consequence of this
type of valve is that there is a minimum input pressure required for the valve to actuate. For many
of the valves commonly used by FRC teams this is between 20 and 30 psi. Looking at the LEDs on
the 9472 module itself is the best way to verify that code is behaving the way you expect in order
to eliminate electrical or air pressure input issues.

Single acting solenoids apply or vent pressure from a single output port. They are typically used
either when an external force will provide the return action of the cylinder (spring, gravity,
separate mechanism) or in pairs to act as a double solenoid. A double solenoid switches air flow
between two output ports (many also have a center position where neither output is vented or
connected to the input). Double solenoid valves are commonly used when you wish to control
both the extend and retract actions of a cylinder using air pressure. Double solenoid valves have
two electrical inputs which connect back to two separate channels on the solenoid breakout.

Note on port numbering
The port numbers on the Solenoid class range from 1-8 as printed on the Solenoid Breakout
Board. The NI 9472 indicator lights are numbered 0-7 for the 8 ports, which is different numbering
than used by the class or the Solenoid Breakout Board silk screen.

WPILib programming

Page 33WPILib programming Last Updated: 08-29-2019

http://en.wikipedia.org/wiki/Solenoid_valve

Single Solenoids in WPILib

Single solenoids in WPILib are controlled using the Solenoid class. To construct a Solenoid object,
simply pass the desired port number or module and port number to the constructor. To set the
value of the solenoid call set(true) to enable or set(false) to disable the solenoid output.

Double Solenoids in WPILib

Double solenoids are controlled by the DoubleSolenoid class in WPILib. These are constructed
similarly to the single solenoid but there are now two port numbers to pass to the constructor, a
forward channel (first) and a reverse channel (second). The state of the valve can then be set to
kOff (neither output activated), kForward (forward channel enabled) or kReverse (reverse channel
enabled).

WPILib programming

Page 34WPILib programming Last Updated: 08-29-2019

WPILib sensors

WPILib programming

Page 35WPILib programming Last Updated: 08-29-2019

Using limit switches to control behavior

Limit switches are often used to control mechanisms on robots. While limit switches are
simple to use, they only can sense a single position of a moving part. This makes them ideal
for ensuring that movement doesn't exceed some limit but not so good at controlling the
speed of the movement as it approaches the limit. For example, a rotational shoulder joint on
a robot arm would best be controlled using a potentiometer or an absolute encoder, the limit
switch could make sure that if the potentiometer ever failed, the limit switch would stop the
robot from going to far and causing damage.

What values are provided by the limit switch

Limit switches can have "normally opened" or "normally closed" outputs. The usual way of wiring
the switch is between a digital input signal connection and ground. The digital input has pull-up

WPILib programming

Page 36WPILib programming Last Updated: 08-29-2019

resistors that will make the input be high (1 value) when the switch is open, but when the switch
closes the value goes to 0 since the input is now connected to ground. The switch shown here has
both normally open and normally closed outputs.

Polling waiting for a switch to close

You can write a very simple piece of code that just reads the limit switch over and over again
waiting until it detects that its value transitions from 1 (opened) to 0 (closed). While this works, it's
usually impractical for the program to be able to just wait for the switch to operate and not be
doing anything else, like responding to joystick input. This example shows the fundamental use of
the switch, but while the program is waiting, nothing else is happening.

Command-based program to operate until limit switch closed

package edu.wpi.first.wpilibj.templates.commands;

public class ArmUp extends CommandBase {

WPILib programming

Page 37WPILib programming Last Updated: 08-29-2019

 public ArmUp() {
 }

 protected void initialize() {
 arm.armUp();
 }

 protected void execute() {
 }

 protected boolean isFinished() {
 return arm.isSwitchSet();
 }

 protected void end() {
 arm.armStop();
 }

 protected void interrupted() {
 end();
 }
}

Commands call their execute() and isFinished() methods about 50 times per second, or at a rate of
every 20ms. A command that will operate a motor until the limit switch is closed can read the
digital input value in the isFinished() method and return true when the switch changes to the
correct state. Then the command can stop the motor.

Remember, the mechanism (an Arm in this case) has some inertia and won't stop immediately so
it's important to make sure things don't break while the arm is slowing.

Using a counter to detect the closing of the switch

package edu.wpi.first.wpilibj.templates.subsystems;
import edu.wpi.first.wpilibj.Counter;
import edu.wpi.first.wpilibj.DigitalInput;
import edu.wpi.first.wpilibj.SpeedController;
import edu.wpi.first.wpilibj.Victor;

WPILib programming

Page 38WPILib programming Last Updated: 08-29-2019

import edu.wpi.first.wpilibj.command.Subsystem;
public class Arm extends Subsystem {

 DigitalInput limitSwitch = new DigitalInput(1);
 SpeedController armMotor = new Victor(1);
 Counter counter = new Counter(limitSwitch);

 public boolean isSwitchSet() {
 return counter.get() > 0;
 }

 public void initializeCounter() {
 counter.reset();
 }

 public void armUp() {
 armMotor.set(0.5);
 }

 public void armDown() {
 armMotor.set(-0.5);
 }

 public void armStop() {
 armMotor.set(0.0);
 }
 protected void initDefaultCommand() {
 }
}

It's possible that a limit switch might close then open again as a mechanism moves past the switch.
If the closure is fast enough the program might not notice that the switch closed. An alternative
method of catching the switch closing is use a Counter object. Since counters are implemented in
hardware, it will be able to capture the closing of the fastest switches and increment it's count.
Then the program can simply notice that the count has increased and take whatever steps are
needed to do the operation.

Above is a subsystem that uses a counter to watch the limit switch and wait for the value to
change. When it does, the counter will increment and that can be watched in a command.

WPILib programming

Page 39WPILib programming Last Updated: 08-29-2019

Create a command that uses the counter to detect switch
closing

package edu.wpi.first.wpilibj.templates.commands;

public class ArmUp extends CommandBase {

 public ArmUp() {
 }

 protected void initialize() {
 arm.initializeCounter();
 arm.armUp();
 }

 protected void execute() {
 }

 protected boolean isFinished() {
 return arm.isSwitchSet();
 }

 protected void end() {
 arm.armStop();
 }

 protected void interrupted() {
 end();
 }
}

This command initializes the counter in the above subsystem then starts the motor moving. It then
tests the counter value in the isFinished() method waiting for it to count the limit switch changing.
When it does, the arm is stopped. By using a hardware counter, a switch that might close then
open very quickly can still be caught by the program.

WPILib programming

Page 40WPILib programming Last Updated: 08-29-2019

WPILib Sensor Overview

The WPI Robotics Library supports the sensors that are supplied in the FRC kit of parts, as well
as many commonly used sensors available to FIRST teams through industrial and hobby
robotics suppliers.

Types of supported sensors

On the cRIO, the FPGA implements all the high speed measurements through dedicated hardware
ensuring accurate measurements no matter how many sensors and motors are connected to the
robot. This is an improvement over previous systems, which required complex real time software
routines. The library natively supports sensors in the categories shown below:

• Wheel/motor position measurement - Gear-tooth sensors, encoders, analog encoders, and
potentiometers

• Robot orientation - Compass, gyro, accelerometer, ultrasonic rangefinder
• Generic - Pulse output Counters, analog, I2C, SPI, Serial, Digital input

There are many features in the WPI Robotics Library that make it easy to implement sensors that
don’t have prewritten classes. For example, general purpose counters can measure period and
count from any device generating output pulses. Another example is a generalized interrupt
facility to catch high speed events without polling and potentially missing them.

WPILib programming

Page 41WPILib programming Last Updated: 08-29-2019

Accelerometers - measuring acceleration and
tilt

Accelerometers measure acceleration in one or more axis. One typical usage is to measure
robot acceleration. Another common usage is to measure robot tilt, in this case it measures
the acceleration due to gravity.

Two-axis analog accelerometer

Two-axis analog accelerometer

A commonly used part (shown in the picture above) is a two-axis accelerometer. This device can
provide acceleration data in the X and Y-axes relative to the circuit board. The WPI Robotics Library
you treats it as two separate devices, one for the X- axis and the other for the Y-axis. The
accelerometer can be used as a tilt sensor – by measuring the acceleration of gravity. In this case,
turning the device on the side would indicate 1000 milliGs or one G. Shown is a 2-axis
accelerometer board connected to two analog inputs on the robot. Note that this is not the
accelerometer provided in the 2014 KOP.

WPILib programming

Page 42WPILib programming Last Updated: 08-29-2019

Analog Accelerometer code example

A brief code example is shown above which illustrates how to set up an analog accelerometer
connected to analog module 1, channel 1. The sensitivity and zero voltages were set according to
the datasheet (assumed part is ADXL193, zero voltage set to ideal. Would need to determine actual
offset of specific part being used).

WPILib programming

Page 43WPILib programming Last Updated: 08-29-2019

https://www.sparkfun.com/datasheets/Sensors/Accelerometer/ADXL193.pdf

ADXL345 Accelerometer

The ADXL345 is a three axis accelerometer provided as part of the sensor board in the 2012-2014
KOP. The ADXL345 is capable of measuring accelerations up to +/- 16g and communicates over I2C
or SPI. Wiring instructions for either protocol can be found in the FRC component datasheet.
Additional information can be found in the Analog Devices ADXL345 datasheet. WPILib provides a
separate class for each protocol which handles the details of setting up the bus and enabling the
sensor.

WPILib programming

Page 44WPILib programming Last Updated: 08-29-2019

http://www.usfirst.org/sites/default/files/uploadedFiles/Robotics_Programs/FRC/Game_and_Season__Info/2012_Assets/Accelerometer-Gyro.pdf
http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf

ADXL345 Code Example

A brief code example is shown above illustrating the use of the ADXL345 connected to the I2C bus
on Digital Module 1. The accelerometer has been set to operate in +/- 2g mode. The example
illustrates both the single axis and all axes methods of getting the sensor values, in practice select
one or the other depending on whether you need a single axis or all three. SPI operation is similar,
refer to the Javadoc/Doxygen for the ADXL345_SPI class for additional details on using the sensor
over SPI.

WPILib programming

Page 45WPILib programming Last Updated: 08-29-2019

Gyros to control robot driving direction

Gyros typically in the FIRST kit of parts are provided by Analog Devices, and are actually
angular rate sensors. The output voltage is proportional to the rate of rotation of the axis
perpendicular to the top package surface of the gyro chip. The value is expressed in
mV/°/second (degrees/second or rotation expressed as a voltage). By integrating (summing)
the rate output over time, the system can derive the relative heading of the robot.

Another important specification for the gyro is its full-scale range. Gyros with high full-scale
ranges can measure fast rotation without “pinning” the output. The scale is much larger so
faster rotation rates can be read, but there is less resolution due to a much larger range of
values spread over the same number of bits of digital to analog input. In selecting a gyro, you
would ideally pick the one that had a full-scale range that matched the fastest rate of rotation
your robot would experience. This would yield the highest accuracy possible, provided the
robot never exceeded that range.

Using the Gyro class

The Gyro object should be created in the constructor of the RobotBase derived object. When the
Gyro object is used, it will go through a calibration period to measure the offset of the rate output

WPILib programming

Page 46WPILib programming Last Updated: 08-29-2019

while the robot is at rest to minimize drift. This requires that the robot be stationary and the gyro
is unusable until the calibration is complete.

Once initialized, the GetAngle() (or getAngle() in Java) method of the Gyro object will return the
number of degrees of rotation (heading) as a positive or negative number relative to the robot’s
position during the calibration period. The zero heading can be reset at any time by calling the
Reset() (reset() in Java) method on the Gyro object.

See the code samples below for an idea of how to use the Gyro objects.

Setting Gyro sensitivity
The Gyro class defaults to the settings required for the 250°/sec gyro that was delivered by FIRST
in the 2012-2014 Kit of Parts (ADW22307). It is important to check the documentation included
with the gyro to ensure that you have the correct sensitivity setting.

To change gyro types call the SetSensitivity(float sensitivity) method (or setSensitivity(double
sensitivity) in Java) and pass it the sensitivity in volts/°/sec. Take note that the units are typically
specified in mV (volts / 1000) in the spec sheets. For example, a sensitivity of 12.5 mV/°/sec would
require a SetSensitivity() (setSensitivity() in Java) parameter value of 0.0125.

Using a gyro to drive straight
The following example programs cause the robot to drive in a straight line using the gyro sensor in
combination with the RobotDrive class. The RobotDrive.Drive method takes the speed and the
turn rate as arguments; where both vary from -1.0 to 1.0. The gyro returns a value indicating the
number of degrees positive or negative the robot deviated from its initial heading. As long as the
robot continues to go straight, the heading will be zero. This example uses the gyro to keep the
robot on course by modifying the turn parameter of the Drive method.

The angle is multiplied by a proportional scaling constant (Kp) to scale it for the speed of the robot
drive. This factor is called the proportional constant or loop gain. Increasing Kp will cause the robot
to correct more quickly (but too high and it will oscillate). Decreasing the value will cause the robot
correct more slowly (possibly never reaching the desired heading). This is known as proportional
control, and is discussed further in the PID control section of the advanced programming section.

Using a gyro to drive straight

WPILib programming

Page 47WPILib programming Last Updated: 08-29-2019

Sample Java program for driving straight
This is a sample Java program that drives in a straight line. See the comments in the C++ example
(previous step) for an explanation of its operation.

package edu.wpi.first.wpilibj.templates;
import edu.wpi.first.wpilibj.Gyro;
import edu.wpi.first.wpilibj.RobotDrive;
import edu.wpi.first.wpilibj.SimpleRobot;
import edu.wpi.first.wpilibj.Timer;
public class GyroSample extends SimpleRobot {

 \ private RobotDrive myRobot; // robot drive system
 private Gyro gyro;

 \ double Kp = 0.03;

 public GyroSample() {
 gyro = new Gyro(1); \ // Gyro on Analog Channel 1
 myRobot = new RobotDrive(1,2); \ // Drive train jaguars on PWM 1 and 2
 myRobot.setExpiration(0.1);
 \ }

 public void autonomous() {
 gyro.reset();
 while (isAutonomous()) {
 double angle = gyro.getAngle(); // get current heading
 myRobot.drive(-1.0, -angle*Kp); // drive towards heading 0
 Timer.delay(0.004);
 }
 myRobot.drive(0.0, 0.0);
 \ }
}

Thanks to Joe Ross from FRC team 330 for help with this example.

WPILib programming

Page 48WPILib programming Last Updated: 08-29-2019

Determine robot orientation with a compass

A compass uses the earth’s magnetic field to determine the heading of the robot.

Placement Notes
This field is relatively weak causing the compass to be susceptible to interference from other
magnetic fields such as those generated by the motors and electronics on your robot. If you decide
to use a compass, be sure to mount it far away from interfering electronics and verify its accuracy.

HiTechnic Compass

WPILib directly supports one compass, the HiTechnic Compass. This part connects to the I2C port
on the Digital Sidecar. It is important to note that there is only one I2C port on each of these
modules.

Code Example

The compass is constructed by passing in the Digital Module number that it is connected to. The
current heading of the compass can then be retrieved by calling getAngle() in Java or GetAngle() in
C++.

WPILib programming

Page 49WPILib programming Last Updated: 08-29-2019

Measuring robot distance to a surface using
Ultrasonic sensors

Ultrasonic sensors are a common way to find the distance from a robot to the nearest surface

Ultrasonic rangefinders
Ultrasonic rangefinders use the travel time of an ultrasonic pulse to determine distance to the
nearest object within the sensing cone. There are a variety of different ways that various ultrasonic
sensors communicate the measurement result including:

• Ping-Response (ex. Devantech SRF04, VEX Ultrasonic Rangefinder)
• Analog (ex. Maxbotix LV-MaxSonar-EZ1)
• I2C (ex. Maxbotix I2CXL-MaxSonar-EZ2)

WPILib programming

Page 50WPILib programming Last Updated: 08-29-2019

http://www.acroname.com/robotics/parts/R93-SRF04.html
http://www.vexrobotics.com/276-2155.html
http://www.maxbotix.com/Ultrasonic_Sensors/MB1010.htm
http://www.maxbotix.com/Ultrasonic_Sensors/MB1222.htm

Ping-Response Ultrasonic sensors

To aid in the sue of Ping-Response Ultrasonic sensors such as the Devantech SRF04 pictured
above, WPILib contains an Ultrasonic class. This type of sensor has two transducers, a speaker that
sends a burst of ultrasonic sound, and a microphone that listens for the sound to be reflected off
of a nearby object. It requires two connections to the cRIO, one that initiates the ping and the
other that tells when the sound is received. The Ultrasonic object measures the time between the
transmission and the reception of the echo.

WPILib programming

Page 51WPILib programming Last Updated: 08-29-2019

Creating an Ultrasonic object

Both the Echo Pulse Output and the Trigger Pulse Input have to be connected to digital I/O ports
on a Digital Sidecar. When creating the Ultrasonic object, specify which channels it is connected to
in the constructor, as shown in the examples above. In this case,
ULTRASONIC_ECHO_PULSE_OUTPUT and ULTRASONIC_TRIGGER_PULSE_INPUT are two constants
that are defined to be the digital I/O port numbers. Do not use the ultrasonic class for ultrasonic
rangefinders that do not have these connections. Instead, use the appropriate class for the sensor,
such as an AnalogChannel object for an ultrasonic sensor that returns the range as an analog
voltage.

Reading the distance

The following two examples read the range on an ultrasonic sensor connected to the output port
ULTRASONIC_PING and the input port ULTRASONIC_ECHO.

WPILib programming

Page 52WPILib programming Last Updated: 08-29-2019

Analog Rangefinders
Many ultrasonic rangefinders return the range as an analog voltage. To get the distance you
multiply the analog voltage by the sensitivity or scale factor (typically in inches/V or inches/mV). To
use this type of sensor with WPILib you can either create it as an Analog Channela nd perform the
scaling directly in your robot code, or you can write a class that will perform the scaling for you
each time you request a measurement.

I2C and other Digital Rangefinders
Rangefinders that communicate digitally over I2C, SPI, or Serial may also be used with the cRIO
though no specific classes for these devices are provided through WPILib. Use the appropriate
communication class based on the bus in use and refer to the datasheet for the part to determine
what data or requests to send the device and what format the received data will be in.

WPILib programming

Page 53WPILib programming Last Updated: 08-29-2019

Using Counters

Counter objects are extremely flexible elements that can count input from either a digital input
signal or an analog trigger.

Counter Overview

There are 8 Up/Down Counter units contained in the FPGA which can each operate in a number of
modes based on the type of input signal:

• Gear-tooth/Pulse Width mode - Enables up/down counting based on the width of an input
pulse. This is used to implement the GearTooth sensor class with direction sensing.

• Semi-period mode - Counts the period of a portion of the input signal. This mode is used by the
Ultrasonic class to measure the time of flight of the echo pulse.

• External Direction mode - Can count edges of a signal on one input with the direction (up/
down) determined by a second input

• "Normal mode"/Two Pulse mode - Can count edges from 2 independent sources (1 up, 1 down)

WPILib programming

Page 54WPILib programming Last Updated: 08-29-2019

Gear-Tooth Mode and GearTooth Sensors

Gear-tooth sensors are designed to be mounted adjacent to spinning ferrous gear or sprocket
teeth and detect whenever a tooth passes. The gear-tooth sensor is a Hall-effect device that uses a
magnet and solid-state device that can measure changes in the field caused by the passing teeth.
The picture above shows a gear-tooth sensor mounted to measure a metal gear rotation. Notice
that a metal gear is attached to the plastic gear. The gear tooth sensor needs a ferrous material
passing by it to detect rotation.

The Gear-Tooth mode of the FPGA counter is designed to work with gear-tooth sensors which
indicate the direction of rotation by changing the length of the pulse they emit as each tooth
passes such as the ATS651 provided in the 2006 FRC KOP.

WPILib programming

Page 55WPILib programming Last Updated: 08-29-2019

Semi-Period mode

The semi-period mode of the counter will measure the pulse width of either a high pulse (rising
edge to falling edge) or a low pulse (falling edge to rising edge) on a single source (the Up Source).
Call setSemiPeriodMode(true) to measure high pulses and setSemiPeriodMode(false) to measure
low pulses. In either case, call getPeriod() to obtain the length of the last measured pulse (in
seconds).

External Direction mode
The external direction mode of the counter counts edges on one source (the Up Source) and uses
the other source (the Down Source) to determine direction. The most common usage of this mode
is quadrature decoding in 1x and 2x mode. This use case is handled by the Encoder class which
sets up an internal Counter object, and is covered in the next article Measuring rotation of a wheel
or other shaft using Encoders.

Normal mode

The "normal mode" of the counter, also known as Up/Down mode or Two Pulse mode, counts
pulses occurring on up to two separate sources, one source for Up and one source for Down. A
common use case of this mode is using a single source (the Up Source) with a reflective sensor or
hall effect sensor as a single direction encoder. The code example above shows an alternate
method of setting up the Counter sources, this method is valid for any of the modes. The method

WPILib programming

Page 56WPILib programming Last Updated: 08-29-2019

../../7912/l/85770?data-resolve-url=true&data-manual-id=7912
../../7912/l/85770?data-resolve-url=true&data-manual-id=7912

shown in the Semi-Period mode example is also perfectly valid for all modes of the counter
including the Normal Mode.

Counter Settings

There are a few different parameters that can be set to control various aspects of the counter
behavior:

• Max Period - The maximum period (in seconds) where the device is still considered moving.
This value is used to determine the state of the getStopped() method and effect the output of
the getPeriod() and getRate() methods.

• Update When Empty - Setting this to false will keep the most recent period on the counter
when the counter is determined to be stalled (based on the Max Period described above).
Setting this parameter to True will return 0 as the period of a stalled counter.

• Reverse Direction - Valid in external direction mode only. Setting this parameter to true
reverses the counting direction of the external direction mode of the counter.

• Samples to Average - Sets the number of samples to average when determining the period.
Averaging may be desired to account for mechanical imperfections (such as unevenly spaced
reflectors when using a reflective sensor as an encoder) or as oversampling to increase
resolution. Valid values are 1 to 127 samples.

• Distance Per Pulse - Sets the multiplier used to determine distance from count when using the
getDistance() method.

Starting, Stopping, and Resetting the counter

Before a counter object will begin counting, the start() method must be called to start the counter.
To stop the counter, call the stop() method. To reset the counter value to 0 call reset().

WPILib programming

Page 57WPILib programming Last Updated: 08-29-2019

Getting Counter Values

The following values can be retrieved from the counter:

• Count - The current count. May be reset by calling reset()
• Distance - The current distance reading from the counter. This is the count multiplied by the

Distance Per Count scale factor.
• Period - The current period of the counter in seconds. If the counter is stopped this value may

return 0, depending on the setting of the Update When Empty parameter.
• Rate - The current rate of the counter in units/sec. It is calculated using the DistancePerPulse

divided by the period. If the counter is stopped this value may return Inf or NaN, depending on
language.

• Direction - The direction of the last value change (true for Up, false for Down)
• Stopped - If the counter is currently stopped (period has exceeded Max Period)

WPILib programming

Page 58WPILib programming Last Updated: 08-29-2019

Measuring rotation of a wheel or other shaft
using encoders

Encoders are devices for measuring the rotation of a spinning shaft. Encoders are typically
used to measure the distance a wheel has turned which can be translated into the distance
the robot has traveled. The distance traveled over a measured period of time represents the
speed of the robot, and is another common use for encoders. Encoders can also directly
measure the rate of rotation by determining the time between pulses. This article covers the
use of quadrature encoders (defined below) For non-quadrature incremental encoders, see
the article on counters. For absolute encoders the appropriate article will depend on the input
type (most commonly analog, I2C or SPI).

Quadrature Encoder Overview

A quadrature encoder is a device for measuring shaft rotation that consists of two sensing
elements 90 degrees out of phase. The most common type of encoder typically used in FRC is an
optical encoder which uses one or more light sources (LEDs) pointed at a striped or slit code wheel
and two detectors 90 degrees apart (these may be located opposite the LED to detect transmission
or on the same side as the LED to measure reflection). The phase difference between the signals
can be used to detect the direction of rotation by determining which signal is "leading" the other.

WPILib programming

Page 59WPILib programming Last Updated: 08-29-2019

Encoders vs. Counters

The FRC FPGA has 4 Quadrature decoder modules which can do 4x decoding of a 2 channel
quadrature encoder signal. This means that the module is counting both the rising and falling
edges of each pulse on each of the two channels to yield 4 ticks for every stripe on the codewheel.
The quadrature decoder module is also capable of handling an index channel which is a feature on
some encoders that outputs one pulse per revolution. The counter FPGA modules are used for 1x
or 2x decoding where the rising or rising and falling edges of one channel are counted and the
second channel is used to determine direction. In either case it is recommended to use the
Encoder class for all quadrature encoders, the class will assign the appropriate FPGA module
based on the encoding type you choose.

Sampling Modes
The encoder class has 3 sampling modes: 1x, 2x and 4x. The 1x and 2x mode count the rising or
the rising and falling edges respectively on a single channel and use the B channel to determine
direction only. The 4x mode counts all 4 edges on both channels. This means that the 4x mode will
have a higher positional accuracy (4 times as many ticks per rotation as 1x) but will also have more
jitter in the rate output due to mechanical deficiencies (imperfect phase difference, imperfect
striping) as well as running into the timing limits of the FPGA. For sensing rate, particularly at high
RPM, using 1x or 2x decoding and increasing the number of samples to average may substantially
help reduce jitter. Also keep in mind that the FPGA has 4 quadrature decoding modules (used for

WPILib programming

Page 60WPILib programming Last Updated: 08-29-2019

4x decoding) and 8 counter modules (used for 1x and 2x decoding as well as Counter objects),
depending on the number of encoders on your robot you may have to allocate the quadrature
decoder modules to only the places where you need the most positional accuracy.

Constructing an Encoder object

There are a number of constructors you may use to construct encoders, but the most common is
shown above. In the example, 1 and 2 are the port numbers for the two digital inputs on the
default module and true tells the encoder to not invert the counting direction. The sensed
direction could depend on how the encoder is mounted relative to the shaft being measured. The
k4X makes sure that an encoder module from the FPGA is used and 4X accuracy is obtained.

Setting Encoder Parameters

The following parameters of the encoder class may be set through the code:

• Max Period - The maximum period (in seconds) where the device is still considered moving.
This value is used to determine the state of the getStopped() method and effect the output of
the getPeriod() and getRate() methods. This is the time between pulses on an individual channel
(scale factor is accounted for). It is recommended to use the Min Rate parameter instead as it
accounts for the distance per pulse, allowing you to set the rate in engineering units.

• Min Rate - Sets the minimum rate before the device is considered stopped. This compensates
for both scale factor and distance per pulse and therefore should be entered in engineering
units (RPM, RPS, Degrees/sec, In/s, etc)

WPILib programming

Page 61WPILib programming Last Updated: 08-29-2019

• Distance Per Pulse - Sets the scale factor between pulses and distance. The library already
accounts for the decoding scale factor (1x, 2x, 4x) separately so this value should be set
exclusively based on the encoder's Pulses per Revolution and any gearing following the
encoder.

• Reverse Direction - Sets the direction the encoder counts, used to flip the direction if the
encoder mounting makes the default counting direction unintuitive.

• Samples to Average - Sets the number of samples to average when determining the period.
Averaging may be desired to account for mechanical imperfections (such as unevenly spaced
reflectors when using a reflective sensor as an encoder) or as oversampling to increase
resolution. Valid values are 1 to 127 samples.

Starting, Stopping and Resetting Encoders

Before an encoder object will begin counting, the start() method must be called to start the
encoder. To stop the encoder, call the stop() method. To reset the encoder value to 0 call reset().

Getting Encoder Values

The following values can be retrieved from the encoder:

• Count - The current count. May be reset by calling reset().
• Raw Count - The count without compensation for decoding scale factor.
• Distance - The current distance reading from the counter. This is the count multiplied by the

Distance Per Count scale factor.
• Period - The current period of the counter in seconds. If the counter is stopped this value may

return 0. This is deprecated, it is recommended to use rate instead.

WPILib programming

Page 62WPILib programming Last Updated: 08-29-2019

• Rate - The current rate of the counter in units/sec. It is calculated using the DistancePerPulse
divided by the period. If the counter is stopped this value may return Inf or NaN, depending on
language.

• Direction - The direction of the last value change (true for Up, false for Down)
• Stopped - If the counter is currently stopped (period has exceeded Max Period)

WPILib programming

Page 63WPILib programming Last Updated: 08-29-2019

Analog inputs

The NI 9201 Analog to Digital module has a number of features not available on simpler
controllers. It will automatically sample the analog channels in a round robin fashion,
providing a combined sample rate of 500 ks/s (500,000 samples / second). These channels can
be optionally oversampled and averaged to provide the value that is used by the program.
There are raw integer and floating point voltage outputs available in addition to the averaged
values. The diagram below outlines this process.

Analog System Diagram

When the system averages a number of samples, the division results in a fractional part of the
answer that is lost in producing the integer valued result. Oversampling is a technique where extra
samples are summed, but not divided down to produce the average. Suppose the system were
oversampling by 16 times – that would mean that the values returned were actually 16 times the
average. Using the oversampled value gives additional precision in the returned value.

Constructing an Analog Channel

WPILib programming

Page 64WPILib programming Last Updated: 08-29-2019

Oversampling and Averaging

The number of averaged and oversampled values are always powers of two (number of bits of
oversampling/averaging). Therefore the number of oversampled or averaged values is two ^ bits,
where ‘bits’ is passed to the methods: SetOversampleBits(bits) and SetAverageBits(bits). The actual
rate that values are produced from the analog input channel is reduced by the number of
averaged and oversampled values. For example, setting the number of oversampled bits to 4 and
the average bits to 2 would reduce the number of delivered samples by 16x and 4x, or 64x total.

Code example

The above code shows an example of how to get and set the number of oversample bits and
average bits on an analog channel

WPILib programming

Page 65WPILib programming Last Updated: 08-29-2019

Sample Rate

The sample rate is fixed per analog I/O module, so all the channels on a given module must
sample at the same rate. However, the averaging and oversampling rates can be changed for each
channel. The use of some sensors (currently just the Gyro) will set the sample rate to a specific
value for the module it is connected to. The example above shows setting the sample rate for a
module to the default value of 50,000 samples per channel per second (400kS/s total).

Reading Analog Values

There are a number of options for reading Analog input values from an analog channel:

1. Raw value - The instantaneous raw 12-bit (0-4096) value representing the full -10V to 10V range
of the ADC. The typical 0V-5V swing will provide values in the approximate range 0-1024. Note
that this method does not take into account the calibration information stored in the module.

2. Voltage - The instantaneous voltage value of the channel. This method takes into account the
calibration information stored in the 9201 module to convert the raw value to a voltage.

3. Average Raw value - The raw, unscaled value output from the oversampling and averaging
engine. See above for information on the effect of oversampling and averaging and how to set
the number of bits for each.

4. Average Voltage - The scaled voltage value output from the oversampling and averaging engine.
This method uses the stored calibration information to convert the raw average value into a
voltage.

5. Accumulator - The purpose and use of the accumulator is discussed below.

WPILib programming

Page 66WPILib programming Last Updated: 08-29-2019

Accumulator
The analog accumulator is a part of the FPGA that acts as an integrator for analog signals,
summing the value over time. A common example of where this behavior is desired is for a gyro. A
gyro outputs an analog signal corresponding to the rate of rotation, however the measurement
commonly desired is heading or total rotational displacement. To get heading from rate, you
perform an integration. By performing this operation at the hardware level it can occur much
quicker than if you were to attempt to implement it in the robot code. The accumulator can also
apply an offset to the analog value before adding it to the accumulator. Returning to the gyro
example, most gyros output a voltage of 1/2 of the full scale when not rotating and vary the
voltage above and below tat reference to indicate direction of rotation.

Setting up an accumulator

There are two accumulators implemented in the FPGA, connected to channels 0 and 1 of Analog
Module 1. Any device which you wish to use with the analog accumulator must be attached to one
of these two channels. There are no mandatory parameters that must be set to use the
accumulator, however depending on the device you may wish to set some or all of the following:

1. Accumulator Initial Value - This is the raw value the accumulator returns to when reset. It is
added to the output of the hardware accumulator before the value is returned to the code.

2. Accumulator Center - This raw value is subtracted from each sample before the sample is
applied to the accumulator. Note that the accumulator is after the oversample and averaging
engine in the pipeline so oversampling will affect the appropriate value for this parameter.

3. Accumulator Deadband - The raw value deadband around the center point where the
accumulator will treat the sample as 0.

4. Accumulator Reset - Resets the value of the accumulator to the Initial Value (0 by default).

WPILib programming

Page 67WPILib programming Last Updated: 08-29-2019

Reading from an Accumulator

Two separate pieces of information can be read from the accumulator in three total ways:

1. Count - The number of samples that have been added to the accumulator since the last reset.
2. Value - The value currently in the accumulator
3. Combined - Retrieve the count and value together to assure synchronization. This should be

used if you are going to use the count and value in the same calculation such as averaging.

WPILib programming

Page 68WPILib programming Last Updated: 08-29-2019

Potentiometers to measure joint angle or
linear motion

Potentiometers are a common analog sensor used to measure absolute angular rotation or
linear motion (string pots) of a mechanism. A potentiometer is a three terminal device that
uses a moving contact to from a variable resistor divider. When the outer contacts are
connected to 5V and ground and the variable contact is connected to an analog input, the
analog input will see an analog voltage that varies as the potentiometer is turned.

Potentiometer Taper
The taper of a potentiometer describes the relationship between the position and the resistance.
The two common tapers are linear and logarithmic. A linear taper potentiometer will vary the
resistance proportionally to the rotation of the shaft; For example, the shaft will measure 50% of
the resistave value at the midpoint of the rotation. A logarithmic taper potentiometer will vary the
resistance logarithmically with the rotation of the shaft. Logarithmic potentiometers are commonly
used in audio controls due to human perception of audio volume also being logarithmic.

Most or all FRC uses for potentiometers should use linear potentiometers so that angle can be
deduced directly from the voltage.

Using Potentiometers with WPILib
WPILib does not contain an explicit class for using potentiometers, as an analog device code
should use the Analog Channel class to interface with the potentiometer. Some teams choose to
create a class in their code which extends Analog Channel which implements the scaling and offset
operations which convert voltages to angles or other real world units used on the robot.

WPILib programming

Page 69WPILib programming Last Updated: 08-29-2019

Analog triggers

An analog trigger is a way to convert an analog signal into a digital signal using resources built
into the FPGA. The resulting digital signal can then be used directly or fed into other digital
components of the FPGA such as the counter or encoder modules. The analog trigger module
works by comparing analog signals to a voltage range set by the code. The specific return
types and meanings depend on the analog trigger mode in use.

Creating an Analog Trigger

Constructing an analog trigger requires passing in a channel number, a module and channel
number, or a created Analog Channel object.

Setting Analog Trigger Voltage Range

The voltage range of the analog trigger can be set in either raw units (0 to 4096 representing -10V
to 10V) or voltages. In both cases the value set does not account for oversampling, if oversampling
is used the user code must perform the appropriate compensation of the trigger window before
setting.

WPILib programming

Page 70WPILib programming Last Updated: 08-29-2019

Filtering and Averaging

The analog trigger can optionally be set to use either the averaged value (output from the average
and oversample engine) or a filtered value instead of the raw analog channel value. A maximum of
one of these options may be selected at a time, the filter cannot be applied on top of the averaged
signal.

Filtering

The filtering option of the analog trigger uses a 3-point average reject filter. This filter uses a
circular buffer of the last three data points and selects the outlier point nearest the median as the
output. The primary use of this filter is to reject datapoints which errantly (due to averaging or
sampling) appear within the window when detecting transitions using the Rising Edge and Falling
Edge functionality of the analog trigger (see below).

Analog Trigger Direct Outputs

The analog trigger class has two direct types of output:

• In Window - Returns true if the value is inside the range and false if it is outside (above or
below)

• Trigger State - Returns true if the value is above the upper limit, false if it is below the lower
limit and maintains the previous state if in between (hysteresis)

WPILib programming

Page 71WPILib programming Last Updated: 08-29-2019

Analog Trigger Output Class
The analog trigger output class is used to represent a specific output from an analog trigger. This
class is primarily used as the interface between classes such as Counter or Encoder and an Analog
Trigger. When used with these classes , the class will create the AnalogTriggerOutput object
automatically when passed the AnalogTrigger object.

This class contains the same two outputs as the AnalogTrigger class plus two additional options
(note these options cannot be read directly as they emit pulses, they can only be routed to other
FPGA modules):

• Rising Pulse - In rising pulse mode the trigger generates a pulse when the analog signal
transitions directly from below the lower limit to above the upper limit. This is typically used
with the rollover condition of an analog sensor such as an absolute magnetic encoder or
continuous rotation potentiometer.

• Falling Pulse - In falling pulse mode the trigger generates a pulse when the analog signal
transitions directly from above the upper limit to below the lower limit. This is typically used
with the rollover condition of an analog sensor such as an absolute magnetic encoder or
continuous rotation potentiometer.

WPILib programming

Page 72WPILib programming Last Updated: 08-29-2019

Operating the robot with feedback from
sensors (PID control)

Without feedback the robot is limited to using timing to determine if it's gone far enough,
turned enough, or is going fast enough. And for mechanisms, without feedback it's almost
impossible to get arms at the right angle, elevators at the right height, or shooters to the right
speed. There are a number of ways of getting these mechanisms to operate in a predictable
way. The most common is using PID (Proportional, Integral, and Differential) control. The basic
idea is that you have a sensor like a potentiometer or encoder that can measure the variable
you're trying to control with a motor. In the case of an arm you might want to control the angle
- so you use a potentiometer to measure the angle. The potentiometer is an analog device, it
returns a voltage that is proportional to the shaft angle of the arm.

To move the arm to a preset position, say for scoring, you predetermine what the
potentiometer voltage should be at that preset point, then read the arms current angle
(voltage). The different between the current value and the desired value represents how far
the arm needs to move and is called the error. The idea is to run the motor in a direction that
reduces the error, either clockwise or counterclockwise. And the amount of error (distance
from your setpoint) determines how fast the arm should move. As it gets closer to the
setpoint, it slows down and finally stops moving when the error is near zero.

The WPILib PIDController class is designed to accept the sensor values and output motor
values. Then given a setpoint, it generates a motor speed that is appropriate for its calculated
error value.

Creating a PIDController object

Creating a PIDController object

The PIDController class allows for a PID control loop to be created easily, and runs the control
loop in a separate thread at consistent intervals. The PIDController automatically checks a

WPILib programming

Page 73WPILib programming Last Updated: 08-29-2019

PIDSource for feedback and writes to a PIDOutput every loop. Sensors suitable for use with
PIDController in WPILib are already subclasses of PIDSource. Additional sensors and custom
feedback methods are supported through creating new subclasses of PIDSource. Jaguars and
Victors are already configured as subclasses of PIDOutput, and custom outputs may also be
created by sub-classing PIDOutput.

A potentiometer that turns with the turret will provide feedback of the turret angle. The
potentiometer is connected to an analog input and will return values ranging from 0-5V from full
clockwise to full counterclockwise motion of the turret. The joystick X-axis returns values from -1.0
to 1.0 for full left to full right. We need to scale the joystick values to match the 0-5V values from
the potentiometer. This is done with the expression (1). The scaled value can then be used to
change the setpoint of the control loop as the joystick is moved.

The 0.1, 0.001, and 0.0 values are the Proportional, Integral, and Differential coefficients
respectively. The AnalogChannel object is already a subclass of PIDSource and returns the
voltage as the control value and the Jaguar object is a subclass of PIDOutput.

The PIDController object will automatically (in the background):

• Read the PIDSource object (in this case the turretPot analog input)
• Compute the new result value
• Set the PIDOutput object (in this case the turretMotor)

This will be repeated periodically in the background by the PIDController. The default repeat rate
is 50ms although this can be changed by adding a parameter with the time to the end of the
PIDController argument list. See the reference document for details.

Setting the P, I, and D values
The output value is computed by adding the weighted values of the error (proportional term), the
sum of the errors (integral term) and the rate of change of errors (differential term). Each of these
is multiplied by a scaling constant, the P, I and D values before adding the terms together. The
constants allow the PID controller to be tuned so that each term is contributing an appropriate
value to the final output.

The P, I, and D values are set in the constructor for the PIDController object as parameters.

The SmartDashboard in Test mode has support for helping you tune PID controllers by displaying
a form where you can enter new P, I, and D constants and test the mechanism.

WPILib programming

Page 74WPILib programming Last Updated: 08-29-2019

../../7932/l/81113?data-resolve=true&data-manual-id=7932

Continuous sensors like continuous rotation potentiometers
The PIDController object can also handle continuous rotation potentiometers as input devices.
When the pot turns through the end of the range the values go from 5V to 0V instantly. The PID
controller method SetContinuous() will set the PID controller to a mode where it will computer the
shortest distance to the desired value which might be through the 5V to 0V transition. This is very
useful for drive trains that use have continuously rotating swerve wheels where moving from 359
degrees to 10 degrees should only be a 11 degree motion, not 349 degrees in the opposite
direction.

Controlling the speed of a motor
Controlling motor speed is a a little different then position control. Remember, with position
control you are setting the motor value to something related to the error. As the error goes to zero
the motor stops running. If the sensor (an optical encoder for example) is measuring motor speed
as the speed reaches the setpoint, the error goes to zero, and the motor slows down. This causes
the motor to oscillate as it constantly turns on and off. What is needed is a base value of motor
speed called the "Feed forward" term. This 4th value, F, is added in to the output motor voltage
independently of the P, I, and D calculations and is a base speed the motor will run at. The P, I, and
D values adjust the feed forward term (base motor speed) rather than directly control it. The closer
the feed forward term is, the smoother the motor will operate.

Note: The feedfoward term is multiplied by the setpoint for the PID controller so that it
scales with the desired output speed.

Using PID controllers in command based robot programs

Using PID controllers in command based robot programs

The easiest way to use PID controllers with command based robot programs is by implementing
PIDSubsystems for all your robot mechanisms. This is simply a subsystem with a PIDController
object built-in and provides a number of convenience methods to access the required PID
parameters. In a command based program, typically commands would provide the setpoint for
different operations, like moving an elevator to the low, medium or high position. In this case, the
isFinished() method of the command would check to see if the embedded PIDController had

WPILib programming

Page 75WPILib programming Last Updated: 08-29-2019

reached the target. See the Command based programming section for more information and
examples.

WPILib programming

Page 76WPILib programming Last Updated: 08-29-2019

../../7952/l/?data-resolve=true&data-manual-id=7952

Driver Station Inputs and
Feedback

WPILib programming

Page 77WPILib programming Last Updated: 08-29-2019

Driver Station Input Overview

The FRC Driver Station software serves as the interface between the human operators and the
robot. The software takes input from a number of sources and forwards it to the robot where
the robot code can act on it to control mechanisms.

Input types

The chart above shows the different types of inputs that may be transmitted by the DS software.
The most common input is an HID compliant joystick or gamepad such as the Logitech Attack 3 or
Logitech Extreme 3D Pro joysticks which have been provided in the Kit of Parts since 2009. In
addition to these devices teams can also use the Cypress FirstTouch board to design custom IO
solutions such as buttons potentiometers or other custom input. This custom IO can then be
accessed using either the standard IO methods of the Driver Station class or by using the
Enhanced IO Class if additional customization or advanced features are required. Note that a
number of devices are now available which allow custom IO to be exposed as a standard USB HID
device such as the E-Stop Robotics CCI or the U-HID device.

WPILib programming

Page 78WPILib programming Last Updated: 08-29-2019

https://www.estoprobotics.com/estore/index.php?_a=viewProd&productId=33
http://www.u-hid.com/home/index.php

Driver Station Class

The Driver Station class has methods for reading all of that "Regular I/O" as well as additional
methods to access other information such as the robot mode, battery voltage, alliance color and
team number. Note that while the Driver Station class has methods for accessing the joystick data,
there is another class "Joystick" that provides a much more user friendly interface to this data. The
DriverStation class is constructed as a singleton by the base class. To get access to the methods of
the DriverStation object constructed by the base class, call DriverStation.getInstance() and either
store the result in a DriverStation object (if using a lot) or call the method on the instance directly.

Robot Mode

The Driver Station class provides a number of methods for checking the current mode of the
robot, these methods are most commonly used to control program flow when using the
SimpleRobot base class. There are two separate pieces of information that define the current
mode, the enable state (enabled/disabled) and the control state(autonomous, operator control,
test). This means that exactly one method from the first group and one method from the second
group should always return true. For example, if the Driver Station is currently set to Test mode
and the robot is disabled the methods isDisabled() and isTest() would both return true.

WPILib programming

Page 79WPILib programming Last Updated: 08-29-2019

../../7912/l/130578?data-resolve-url=true&data-manual-id=7912

Battery Voltage

In order to report the robot battery voltage back to the Driver Station software the DriverStation
class runs a task which is constantly measuring and updating the battery voltage using the Analog
Breakout with the jumper installed on the 9201 module in slot 1 of the cRIO. This information can
be queried from the DriverStation class in order to perform voltage compensation or actively
manage robot power draw by detecting battery voltage dips and shutting off or limiting non-critical
mechanisms,

Alliance

The DriverStation class can provide information on what alliance color the robot is. When
connected to FMS this is the alliance color communicated to the DS by the field. When not
connected, the alliance color is determined by the Team Station dropdown box on the Operation
tab of the DS software.

Location

The getLocation() method of the Driver Station returns an integer indicating which station number
the Driver Station is in (1-3). Note that the station that the DS and controls are located in is not
typically related to the starting position of the robot so this information may be of limited use.
When not connected to the FMS software this state is determined by the Team Station dropdown
on the DS Operation tab.

WPILib programming

Page 80WPILib programming Last Updated: 08-29-2019

Team Number

The getTeamNumber method returns an integer indicating the FRC team number the Driver
Station software is currently set to. One example of using this information would be to distinguish
at runtime between multiple robots with identical code but different constants/tuning parameters.

Match Time

This method returns the approximate match time in seconds. Note that this time is derived by
starting a timer at 0 when the enable signal is received for Autonomous and setting the timer to 15
seconds when the enable signal is received for Teleop. This is not an official time sent from the
FMS. Another consequence of this is that if the controller reboots or disconnects from the DS
during the match, then reconnects, this time will be incorrect.

Custom IO Methods

The DriverStation class also contains methods for accessing custom IO on the Cypress FirstTouch
board in compatibility mode. If a Cypress board is not connected to the DS these inputs can be
used as virtual IO and set with the keyboard and mouse inside the Driver Station software on the I/
O tab. Additional information on accessing this data can be found in the Custom I/O article.

WPILib programming

Page 81WPILib programming Last Updated: 08-29-2019

../../7912/l/133054?data-resolve-url=true&data-manual-id=7912

Joysticks

The standard input device supported by the WPI Robotics Library is a USB joystick or gamepad.
The Logitech Attack 3 joystick provided in the KOP from 2009-2012 comes equipped with
eleven digital input buttons and three analog axes, and interfaces with the robot through the
Joystick class. The Joystick class itself supports five analog and twelve digital inputs which
allows for joysticks with more capabilities such as the Logitech Extreme 3D Pro included in the
2013 KOP which has 4 analog axes and 12 buttons. Note that the rest of this article exclusively
uses the term joystick but can also be referring to a HID compliant USB gamepad.

USB connection

The joystick must be connected to one of the four available USB ports on the driver station. The
startup routine will read whatever position the joysticks are in as the center position, therefore,
when the station is turned on the joysticks must be at their center position. In general the Driver
Station software will try to preserve the ordering of devices between runs but it is a good idea to
note what order your devices should be in and check each time you start the Driver Station
software that they are correct. This can be done by selecting the Setup tab and viewing the order
in the Joystick Setup box on the right hand side. Pressing a button on a joystick will cause its entry
in the table to light up blue and have asterisks appear after the name. To reorder the joysticks
simply click and drag.

New for 2014: The Driver Station will now show up to 6 devices in the Setup window. The first 4
devices will be transmitted to the robot. The additional devices are shown to allow teams to use

WPILib programming

Page 82WPILib programming Last Updated: 08-29-2019

one component of a composite device such as the TI Launchpad with FRC software without having
to sacrifice one of the 4 transmitted devices.

Joystick Refresh

When the Driver Station is in disabled mode it is routinely looking for status changes on the
joystick devices, unplugged devices are removed from the list and new devices are opened and
added. When not connected to the FMS, unplugging a joystick will force the Driver Station into
disabled mode. To start using the joystick again plug the joystick back in, check that it shows up in
the right spot, then re-enable the robot. While the Driver Station is in enabled mode it will not scan
for new devices as this is a time consuming operation and timely update of signals from attached
devices takes priority.

When the robot is connected to the Field Management System at competition the Driver Station
mode is dictated by the FMS. This means that you cannot disable your robot and the DS cannot
disable itself in order to detect joystick changes. A manual complete refresh of the joysticks can be
initiated by pressing the F1 key on the keyboard. Note that this will close and re-open all devices so
all devices should be in their center position as noted above.

Constructing a Joystick Object

The primary constructor for the Joystick class takes a single parameter representing the port
number of the Joystick, this is the number (1-4) next to the joystick in the Driver Station software's
Joystick Setup box (shown in the first image). There is also a constructor which takes additional
parameters of the number of axes and buttons and can be used with the get and set axis channel
methods to create subclasses of Joystick to use with specific devices.

WPILib programming

Page 83WPILib programming Last Updated: 08-29-2019

Accessing Joystick Values - Option 1

There are two ways to access the current values of a joystick object. The first way is by using the
set of named accessor methods or the getAxis method. The Joystick class contains the default
mapping of these methods to the proper axes of the joystick for the KOP joystick. If you are using a
another device you can subclass Joystick and use the setAxisChannel method to set the proper
mappings if you wish to use these methods. Note that there are only named accessor methods for
5 of the 6 possible axes and 2 of the possible twelve buttons, if you need access to other axes or
buttons, see Option 2 below.

Joystick axes return a scaled value in the range 1,-1 and buttons return a boolean value indicating
their triggered state. Note that the typical convention for joysticks and gamepads is for Y to be
negative as they joystick is pushed away from the user, "forward", and for X to be positive as the
joystick is pushed to the right. To check this for a given device, see the section below on
"Determining Joystick Mapping".

Accessing Joystick Values - Option 2

The second way to access joystick values is to use the methods getRawAxis() and getRawButton().
These methods take an integer representing the axis or button number as a parameter and return
the corresponding value. For a method to determine the mapping between the physical axes and

WPILib programming

Page 84WPILib programming Last Updated: 08-29-2019

buttons of your device and the appropriate channel number see the section "Determining Joystick
Mapping" below.

Polar methods

The Joystick class also contains helper methods for converting the joystick input to a polar
coordinate system. For these methods to work properly, getX and getY have to return the proper
axis (remap with setChannel() if necessary).

Determining Joystick Mapping

One way to determine joystick mapping is by writing robot code to display axis and button values
via the dashboard or console, loading it on the robot, then testing the joystick. A simpler way is to

WPILib programming

Page 85WPILib programming Last Updated: 08-29-2019

download the Joystick Explorer utility program from the WPILib project which uses the same
joystick code as the Driver's Station and displays the values of all 6 axes and 12 buttons. This
program requires the LabVIEW 2012 runtime (any computer with the Driver Station installed will
have it). Using this utility select your desired device from the drop-down menu then run through
the physical axes and buttons on the joystick and note the corresponding channel number and
range. Note that some features which may seem like buttons may actually show up as axes and
that in some cases these features share an axis (X-Box controller triggers as an example).

WPILib programming

Page 86WPILib programming Last Updated: 08-29-2019

http://firstforge.wpi.edu/sf/frs/do/viewRelease/projects.wpilib/frs.joystick_explorer.joystick_explorer

Custom IO - Cypress FirstTouch Module

The Cypress FirstTouch IO module is a board that allows teams to interface to custom IO
solutions such as potentiometers, buttons, switches, encoders, and much more. The methods
used with the Cypress board in standard (compatible) mode may also be used to interface with
virtual IO provided by the DS software if the Cypress board is not attached.

Programming the FirstTouch module
Before using the FirstTouch module the proper software must be loaded onto the board. For
additional details see this article.

Configuring the mode

WPILib programming

Page 87WPILib programming Last Updated: 08-29-2019

../../8559/l/92197?data-resolve-url=true&data-manual-id=8559

The Cypress board can be set to one of two modes when used with the FRC Driver Station.
Additionally, the function of each pin and another of other advanced features can be configured if
the board is set to advanced mode. To set the mode of the board, click on the I/O tab of the Driver
Station, then click the Configure button. Select Compatible or Enhanced at the bottom of the
dialog, and configure the settings in the box above if using Advanced mode (these settings do not
apply to Compatible mode), then click Ok.

Standard Mode

When the Cypress Board is in standard/compatible IO mode the data it provides is accessed
through the Driver Station class. Each of the three types of IO requires a parameter of the channel
number and digital outputs require a value. Valid channels for the IO types are:

• Analog: 1-4
• Digital Input: 1-8
• Digital Output: 1-8

Virtual IO

The same Driver Station methods can be used to interact with Virtual IO if no Cypress Board is
present. On the IO tab of the Driver Station there are controls for each of the 8 Digital Inputs (click

WPILib programming

Page 88WPILib programming Last Updated: 08-29-2019

to toggle), indicators for the 8 Digital Outputs, and controls for the 4 Analog Inputs (click and drag
or type in the box to set).

Enhanced Mode

If the Cypress board is set to enhanced mode, you must use the DriverStationEnhancedIO class to
set and retrieve values. This class has additional methods to handle configuration of the board in
enhanced mode and getting and setting values associated with the advanced features such as
PWM generation and quadrature decoding.

Configuration

The Enhanced IO configuration can be set either using the IO tab of the Driver Station as shown
above or by using the methods in the DriverStationEnhancedIO class. Changes made in the Driver
Station will persist across runs of the DS software by using a configuration file, but will not persist
across different machines even if the same Cypress board is used. Configuration set in the robot
code will override the configuration loaded from the file by the DS but may not override any
changes that are made on the IO tab after the robot has linked to the DS.

WPILib programming

Page 89WPILib programming Last Updated: 08-29-2019

Data

The Enhanced I/O module has a very powerful and expanded set of capabilities beyond just simple
analog and digital I/O. The table above details the available options.

WPILib programming

Page 90WPILib programming Last Updated: 08-29-2019

Displaying Data on the DS - Dashboard
Overview

Often it is desirable to get feedback from the robot back to the drivers. The communications
protocol between the robot and the driver station includes provisions for sending program
specific data. The program at the driver station that receives the data is called the dashboard.

Network Tables - What is it?
Network Tables is the name of the client-server protocol used to share variables across software in
FRC. The robot acts as the Network Tables server and software which wishes to communicate with
it connects as clients. The most common Network Tables client is the dashboard.

Smart Dashboard
The term Smart Dashboard originally referred to the Java dashboard client first released in 2011.
This client used the Network Tables protocol to automatically populate indicators to match the
data entered into Network Tables on the robot side. Since then the term has been blurred a bit as
the LabVIEW dashboard has also converted over to using Network Tables. Additional information
on SmartDashboard can be found in the SmartDashboard chapter.

WPILib programming

Page 91WPILib programming Last Updated: 08-29-2019

../../7932/l/?data-resolve-url=true&data-manual-id=7932

Robot to driver station
networking

WPILib programming

Page 92WPILib programming Last Updated: 08-29-2019

Writing a simple NetworkTables program in
C++ and Java with a Java client (PC side)

NetworkTables is an implementation of a distributed "dictionary". That is named values are
created either on the robot, driver station, or potentially an attached coprocessor, and the
values are automatically distributed to all the other participants. For example, a driver station
laptop might receive camera images over the network, perform some vision processing
algorithm, and come up with some values to sent back to the robot. The values might be an X,
Y, and Distance. By writing these results to NetworkTable values called "X", "Y", and "Distance"
they can be read by the robot shortly after being written. Then the robot can act upon them.

NetworkTables can be used by programs on the robot in either C++, Java or LabVIEW and is
built into each version of WPILib.

Using NetworkTables from a Java robot program

Using NetworkTables from a Java robot program

NetworkTables programs on the robot are easiest to write. The program simply reads or writes
values from within the program. The instance of NetworkTables is automatically created by the
WPILib runtime system. This example is the simplest robot program that can be written that
continuously writes pairs of values (X, and Y) to a table called "datatable". Whenever these values
are written on the robot, they can be read shortly after on the desktop client.

1. The variable "table" is of type NetworkTable. NetworkTables are hierarchical, that is tables can
be nested by using their names for representing the position in the hierarchy.

2. The table is associated with values within the hierarchy, in this case the path to the data is
/datatable/X and /datatable/Y.

3. Values are written to the "datatable" NetworkTable. Each value will automatically be replicated
between all the NetworkTable programs running on the network.

When this program is run on the robot and enabled in Teleop mode, it will start writing
incrementing X and Y values continuously, updating them 4 times per second (every 0.25 seconds).

WPILib programming

Page 93WPILib programming Last Updated: 08-29-2019

Using Network Tables from a C++ robot program

Using Network Tables from a C++ robot program

NetworkTables programs on the robot are easiest to write. The program simply reads or writes
values from within the program. The instance of NetworkTables is automatically created by the
WPILib runtime system. This example is the simplest robot program that can be written that
continuously writes pairs of values (X, and Y) to a table called "datatable". Whenever these values
are written on the robot, they can be read shortly after on the desktop client.

1. The variable "table" is of type NetworkTable. NetworkTables are hierarchical, that is tables can
be nested by using their names for representing the position in the hierarchy.

2. The table is associated with values within the hierarchy, in this case the path to the data is
/datatable/X and /datatable/Y.

3. Values are written to the "datatable" NetworkTable. Each value will automatically be replicated
between all the NetworkTable programs running on the network.

When this program is run on the robot and enabled in Teleop mode, it will start writing
incrementing X and Y values continuously, updating them 4 times per second (every 0.25 seconds).

Using the client version of NetworkTables on a desktop
computer

Using the client version of NetworkTables on a desktop computer

The NetworkTables libraries are built into all versions of robot-side WPILib. You can set values
from the robot in C++, Java or LabVIEW with simple put and get methods. To use it on a laptop
(usually the driver station computer), there are several options:

1. a client library that you can reference from Java programs that you write.
2. from plugins that you write for the SmartDashboard (it's included there)

The Java library is part of the NetBeans Java plugin installation and can be found in the <user-
directory>/sunspotfrcsdk/desktop-lib directory as shown here.

For C++ WindRiver installations the .jar files are located in the C:\WindRiver\WPILib\
desktop-lib directory.

WPILib programming

Page 94WPILib programming Last Updated: 08-29-2019

Setting up NetBeans to create the client-side (laptop/desktop
computer) program

Setting up NetBeans to create the client-side (laptop/desktop computer) program

To write a program that runs on your PC that uses NetworkTables the Java project must reference
the JAR file from the NetBeans installation shown above. The project has to reference the
networktables-desktop.jar file. This is an example of doing it with NetBeans but any IDE will have a
way of adding .JAR files to a project. In this example the .jar file was added to the project
properties.

Note: this is not necessary for a robot program since NetworkTables is built into WPILib.
You simply have to add the necessary java import statements or C++ #includes for the
NetworkTable classes that are used in the program.

The client (laptop) side of the program

The client (laptop) side of the program

This program is the simplest program that you can write on a PC to use NetworkTables. It
continuously reads the values from robot example in the previous step.

1. Set NetworkTables to client mode (not on the robot) and specifiy the IP address of the robot.
2. Create a NetworkTable variable ("table") that is associated with the "datatable" NetworkTable.
3. Loop continuously and sleep for 1 second each time through the loop.
4. Read the X and Y values from the /datatable NetworkTable that was written on the robot in the

previous program and print the values. The program output is shown below.

Program output from the simple client example

Program output from the simple client example

This output is from the NetBeans "output" window. This is the results from the System.out.println()
method from the previous program that is running on a desktop computer retrieving values
written on the robot from the earlier Robot program.

WPILib programming

Page 95WPILib programming Last Updated: 08-29-2019

Viewing the NetworkTables variables in TableViewer

Viewing the NetworkTables variables in TableViewer

There is a diagnostic tool called TableViewer that will display the current state of the
NetworkTables table. In this case, running it will show the current values of all the variables in the
variables created in this example are shown in the red box above. TableViewer is located in the
sunspotfrcsdk folder for NetBeans intstalls or in the C:\WindRiver\Workbench\WPILib folder for
C++ installs.

Receiving notifications of changes to a NetworkTable

Receiving notifications of changes to a NetworkTable

A PC or Robot program can receive notifications of changes to a NetworkTable. This example is a
client-side (PC) program, but the same concepts will work on a robot program. These notifications
are received asynchonously as the new values are received by the NetworkTable library.

1. Connect to the NetworkTable server using the same technique as in the previous example.
2. Register this class as a ITableListener. Changes to the "datatable" will be reported to this class

through the "valueChanged" callback method (below)
3. Sleep for 100 seconds while values are reported. The program could do anything here, but in

this simple example, it only waits for 100 seconds while waiting for values to arrive.
4. This valueChanged method is called whenever there are changes or additions to the

NetworkTable "datatable". The boolean value bln will be true if this is a new value or false if it is
just an update to a previously reported variable. The Object is the new value that has been
received. The output from this program is shown in the next step.

Results of running the client-side (PC) TableListener example

Results of running the client-side (PC) TableListener example

In this screen image the values returned from the TableListener example are shown. Notice that at
the top of the output X and Y are returned with their respective values and "true" for the boolean

WPILib programming

Page 96WPILib programming Last Updated: 08-29-2019

value. This indicates that they are new values. In all the other cases, the boolean value is "false"
indicating that it is just an update to a previously reported value.

Using NetworkTables with RoboRealm

Using NetworkTables with RoboRealm

RoboRealm is a program that does client-side (PC) vision processing. RoboRealm can connect to a
camera on a robot and do real-time tracking of field targets and sending the results back to the
robot. In the past this required writing custom networking code for the PC to robot
communications. RoboRealm now has a built-in NetworkTables client and this allows the
RoboRealm program to send values directly back to the robot via some shared variables.

For further information see: http://www.roborealm.com/help/Network_Tables.php

WPILib programming

Page 97WPILib programming Last Updated: 08-29-2019

http://www.roborealm.com/help/Network_Tables.php

Using TableViewer to see NetworkTable
values

TableViewer is a program to help debug NetworkTables applications. It acts as a
NetworkTables client and allows the viewing of all the keys and associated values in a tabular
format. You can use this to quickly see the value of a variable or set a value for a variable. This
is a java program making it platform independent - it can run anywhere that the java runtime
is installed.

Starting TableViewer

Starting TableViewer

TableViewer is a java application and is distributed as a .jar file. It is named with the version
number, so the actual name you'll see will be dependent on the version of the build. It should be
located in the tools directory in either the C++ or Java installation. In the case of C++ it will be in
C:\WindRiver\WPILib and in Java it will be in <user-home-directory>/sunspotfrcsdk/tools, where the
<user-home-directory> is the operating system installed users home directory. On some operating
systems this can be started by simply double-clicking on the TableViewer.jar file using a file
browser. On other systems it might have to be explicitly run from a command line by entering,
"java -jar TableViewer.jar". The TableViewer application

Once it is running, enter the host IP address of the robot. This is the FRC standard IP naming
convention, 10.TE.AM.2 where TE.AM are replaced with the team number. For example it would be
10.1.90.2 for Team 190.

Viewing Table Values

Viewing Table Values

The TableViewer will start up and show all the keys (variable names) and values for those keys. In
addition it shows a sequence number which is an internal NetworkTables field used to determine

WPILib programming

Page 98WPILib programming Last Updated: 08-29-2019

if values are updated and need refreshing. The sequence number increments every time the value
of a NetworkTable variable changes. The values wrap around at 65535.

The table rows can be sorted by either the Key, Value or Sequence Number by clicking on the
column heading in the table.

WPILib programming

Page 99WPILib programming Last Updated: 08-29-2019

Using NetworkTables with RoboRealm

RoboRealm is a desktop vision application that you run on your driver station and can connect
to a camera on your robot, do a set of vision processing steps that you define, then send the
results back to the robot using NetworkTables. Using RoboRealm is easy since you don't need
a robot to try it. In fact, you can write programs with just images that were taken such as those
that come with any of the three language distributions. For Java and C++, installing the 2014
Sample Vision program will include a bunch of pictures taken with an Axis camera of the actual
field that you can use to make sure your vision algorithm works.

There is a card included with your kit of parts that contains instructions for getting RoboRealm.

The idea is that you create a sequence of image processing steps with RoboRealm that create
the results in variables. Then send those variables to the robot using NetworkTables. The
robot gets the results and uses them to control the robot behavior such as aiming, driving to a
target, setting shooter speed, etc.

WPILib programming

Page 100WPILib programming Last Updated: 08-29-2019

Creating the RoboRealm program

Create the RoboRealm program using the image processing elements shown in the "Contents" tab
(1) on the left side of the interface. The program will appear in the bottom window (2). You can
drag images from Windows Explorer into the Image window (3) to make sure that your algorithm
works well and is repeatable for all the positions that the robot might be in.

By clicking on any of the steps in the program window, you can see the result of that processing
step to make sure it's doing what you expect. Many of the steps can create variables with the
results of that step. For example, the Blob Filter step shown has a checkbox to create an array of
information for the detected blobs (4).

WPILib programming

Page 101WPILib programming Last Updated: 08-29-2019

Interfacing with NetworkTables

Variables that are created in RoboRealm can be sent back to the robot using NetworkTables. To do
that add a "Network_Tables" step (1) to your RoboRealm program and add the variables you
defined to be sent to the robot (2). Set the "Prefix" to "//" (3) and the "Hostname" to the value of
your robot network address (4) and the port to 1735 (5).

In this case it will send an array of values back to the robot for each of the detected blobs.

WPILib programming

Page 102WPILib programming Last Updated: 08-29-2019

Retrieving the values on the robot

Here's a Java program that retrieves those values on the robot and opens or closes a claw (just as a
test) depending on whether there is at least one element in the array of values sent back. The
steps to make this work are:

1. Declare the NetworkTable that will contain the values
2. Get an instance of the table and make sure everything is initialized
3. Create a new NumberArray object that will hold the results
4. Retrieve the array elements (values) for the NetworkTable variable called "HORIZONTAL" that

was exported by RoboRealm

Now whenever the size of the array changes and contains at least one element the method
setClaw(-1) will be called. Whenever the size changes and there are no elements in the array,
setClaw(1) is called.

WPILib programming

Page 103WPILib programming Last Updated: 08-29-2019

	Basic WPILib Programming features
	What is WPILib
	What's included in the library
	Java programming with WPILib
	C++ programming with WPILib

	Choosing a Base Class
	Simple Robot
	Iterative Robot
	Command Based Robot

	Sending data from the cRIO to an Arduino
	The cRIO program
	The Arduino program
	The results

	Getting your robot to drive with the RobotDrive class
	Creating a RobotDrive object with Jaguar speed controllers
	Using other types of speed controllers
	Tank driving with two joysticks
	Arcade driving with a single joystick
	Autonomous driving using the RobotDrive object
	Mecanum driving

	Using actuators (motors, servos, and relays)
	Actuator Overview
	Types of actuators

	Driving motors with speed controller objects (Victors, Talons and Jaguars)
	PWM Controllers, brief theory of operation
	Raw vs Scaled output values
	Calibrating Speed Controllers
	PWM and Safe PWM Classes
	Constructing a Speed Controller object
	Setting parameters
	Setting Speed

	Repeatable Low Power Movement - Controlling Servos with WPILib
	Constructing a Servo object
	Setting Servo Values

	Composite controllers - RobotDrive
	Create a RobotDrive object with 2 motors
	Creating a RobotDrive object with 4 motors
	Creating a RobotDrive object using speed controllers that are already created
	Operating the motors of the RobotDrive
	Inverting the sense of some of the motors

	Driving a robot using Mecanum drive
	Mecanum wheels
	Code for driving with mecanum wheels
	Updating the program for field-oriented driving

	Using the motor safety feature
	Motor Safety Purpose
	Motor Safety Operation
	Enabling/Disabling Motor Safety
	Configuring the Safety timeout

	On/Off control of motors and other mechanisms - Relays
	Relay connection overview
	Relay Directions in WPILib
	Setting Relay Directions

	Operating a compressor for pneumatics
	Starting the compressor

	Operating pneumatic cylinders - Solenoids
	Solenoid Overview
	Note on port numbering
	Single Solenoids in WPILib
	Double Solenoids in WPILib

	WPILib sensors
	Using limit switches to control behavior
	What values are provided by the limit switch
	Polling waiting for a switch to close
	Command-based program to operate until limit switch closed
	Using a counter to detect the closing of the switch
	Create a command that uses the counter to detect switch closing

	WPILib Sensor Overview
	Types of supported sensors

	Accelerometers - measuring acceleration and tilt
	Two-axis analog accelerometer
	Analog Accelerometer code example

	ADXL345 Accelerometer
	ADXL345 Code Example

	Gyros to control robot driving direction
	Using the Gyro class
	Setting Gyro sensitivity
	Using a gyro to drive straight
	Sample Java program for driving straight

	Determine robot orientation with a compass
	Placement Notes
	HiTechnic Compass
	Code Example

	Measuring robot distance to a surface using Ultrasonic sensors
	Ultrasonic rangefinders
	Ping-Response Ultrasonic sensors
	Creating an Ultrasonic object
	Reading the distance

	Analog Rangefinders
	I2C and other Digital Rangefinders

	Using Counters
	Counter Overview
	Gear-Tooth Mode and GearTooth Sensors
	Semi-Period mode
	External Direction mode
	Normal mode
	Counter Settings
	Starting, Stopping, and Resetting the counter
	Getting Counter Values

	Measuring rotation of a wheel or other shaft using encoders
	Quadrature Encoder Overview
	Encoders vs. Counters
	Sampling Modes
	Constructing an Encoder object
	Setting Encoder Parameters
	Starting, Stopping and Resetting Encoders
	Getting Encoder Values

	Analog inputs
	Analog System Diagram
	Constructing an Analog Channel
	Oversampling and Averaging
	Code example

	Sample Rate
	Reading Analog Values
	Accumulator
	Setting up an accumulator
	Reading from an Accumulator

	Potentiometers to measure joint angle or linear motion
	Potentiometer Taper
	Using Potentiometers with WPILib

	Analog triggers
	Creating an Analog Trigger
	Setting Analog Trigger Voltage Range
	Filtering and Averaging
	Filtering

	Analog Trigger Direct Outputs
	Analog Trigger Output Class

	Operating the robot with feedback from sensors (PID control)
	Creating a PIDController object
	Setting the P, I, and D values
	Continuous sensors like continuous rotation potentiometers
	Controlling the speed of a motor
	Using PID controllers in command based robot programs

	Driver Station Inputs and Feedback
	Driver Station Input Overview
	Input types
	Driver Station Class
	Robot Mode
	Battery Voltage
	Alliance
	Location
	Team Number
	Match Time
	Custom IO Methods

	Joysticks
	USB connection
	Joystick Refresh

	Constructing a Joystick Object
	Accessing Joystick Values - Option 1
	Accessing Joystick Values - Option 2
	Polar methods
	Determining Joystick Mapping

	Custom IO - Cypress FirstTouch Module
	Programming the FirstTouch module
	Configuring the mode
	Standard Mode
	Virtual IO

	Enhanced Mode
	Configuration
	Data

	Displaying Data on the DS - Dashboard Overview
	Network Tables - What is it?
	Smart Dashboard

	Robot to driver station networking
	Writing a simple NetworkTables program in C++ and Java with a Java client (PC side)
	Using NetworkTables from a Java robot program
	Using Network Tables from a C++ robot program
	Using the client version of NetworkTables on a desktop computer
	Setting up NetBeans to create the client-side (laptop/desktop computer) program
	The client (laptop) side of the program
	Program output from the simple client example
	Viewing the NetworkTables variables in TableViewer
	Receiving notifications of changes to a NetworkTable
	Results of running the client-side (PC) TableListener example
	Using NetworkTables with RoboRealm

	Using TableViewer to see NetworkTable values
	Starting TableViewer
	Viewing Table Values

	Using NetworkTables with RoboRealm
	Creating the RoboRealm program
	Interfacing with NetworkTables
	Retrieving the values on the robot

