
SMARTDASHBOARD

Last Updated: 09-14-2019

Table of Contents

SmartDashboard ...4
Getting Started with the SmartDashboard ...5

Displaying Expressions from Within the Robot Program8

Changing the display properties of a value ..9

Changing the display widget type for a value ... 11

Testing commands ... 12

Choosing an autonomous program from SmartDashboard 13

Displaying the status of Commands and Subsystems ... 15

Setting robot preferences from SmartDashboard ... 18

Verifying SmartDashboard is working .. 20

SmartDashboard 2.0 (SFX) .. 25
The new SmartDashboard (SFX) ... 26

Setting SFX to Launch with the DS .. 39

Creating a custom control using FXML .. 42

Creating a custom control using Java ... 47

Test mode and LiveWindow ... 53
Enabling Test mode (LiveWindow) .. 54

Displaying LiveWindow values .. 56

PID Tuning with SmartDashboard .. 57

SmartDashboard details ... 59
Stale data and SmartDashboard ... 60

SmartDashboard namespace ... 61

SmartDashboard

Using the SmartDashboard Vision installer 64
Smart Dashboard Standalone/Vision Installer .. 65

Viewing the RoboRealm output in SmartDashboard ... 69

SmartDashboard

SmartDashboard

SmartDashboard

Page 4SmartDashboard Last Updated: 09-14-2019

Getting Started with the SmartDashboard

The SmartDashboard typically runs on the Driver Station computer and will do two functions:

1. View robot data that is displayed as program status as your program is running.
2. View sensor data and operate actuators in Test mode for robot subsystems to verify correct

operation.

The switch between program status and test modes are done on the Driver Station.

What is the SmartDashboard?

What is the SmartDashboard?

The SmartDashboard is a Java program that will display robot data in real time. The
SmartDashboard helps you with these things:

• Displays robot data of your choice while the program is running. It can be displayed as simple
text fields or more elaborately in many other display types like graphs, dials, etc.

• Displays the state of the robot program such as the currently executing commands and the
status of any subsystems

• Displays buttons that you can press to cause variables to be set on your robot
• Allows you to choose startup options on the dashboard that can be read by the robot program

The displayed data is automatically formatted in real-time as the data is sent from the robot, but
you can change the format or the display widget types and then save the new screen layouts to be
used again later. And with all these options, it is still extremely simple to use. To display some data
on the dashboard, simply call one of the SmartDashboard methods with the data and its name
and the value will automatically appear on the dashboard screen.

Installing the SmartDashboard

Installing the SmartDashboard

SmartDashboard

Page 5SmartDashboard Last Updated: 09-14-2019

The SmartDashboard is now packaged with the C++ and Java language updates and can be
launched directly from the Driver Station by selecting the Java or C++ buttons on the Setup tab.
For use on a computer without the language updates installed, or to install the Vision plugins for
use with the Axis camera, download the latest installer package from this page, then run the
downloaded file and follow the prompts. This installer will install the SmartDashboard to
C:\Program Files\SmartDashboard, and will not work with the buttons shown above. Leave the
Dashboard Type as Default and see the instructions here for assistance in getting the DS to launch
this version of the SmartDashboard.

Note: If using the Classmate PC or other PC where the DS is run from a seperate account
from the Java tools install (e.g. Driver and Developer) the buttons shown above may not
work. You can utilize the SmartDashboard in this type of setup in one of two ways. The first way is
to set the type to Default and modify the DS INI file to launch the appropriate dashboard, details
can be found in this article (replace the Dashboard location used in that article with the one in
your User\sunsputfrcsdk\tools directory). The second option is to copy the C:\Users\Developer\
sunspotfrcsdk\tools directory to C:\Users\Driver\sunspotfrcsdk\tools. When using this second
method it is recommended to make sure that the Dashboard under both the Driver and Developer
accounts point to the same save file (see Locating the Save File) below.

Configuring the Team Number

Configuring the Team Number

The first time you launch the SmartDashboard you should be prompted for your team number. To
change the team number after this: click File > Preferences to open the Preferences dialog.
Double-click the box to the right of Team Number and enter your FRC Team Number, then click
outside the box to save. Note that the SmartDashboard will take a moment to configure itself
for the team number, do not be alarmed.

Locating the Save File

Locating the Save File

Users may wish to customize the save location of the SmartDashboard. To do this click the box
next to Save File then browse to the folder where you would like to save the configuration. It is
recommended that this folder be inside the users home directory and not inside the

SmartDashboard

Page 6SmartDashboard Last Updated: 09-14-2019

http://firstforge.wpi.edu/sf/frs/do/listReleases/projects.smartdashboard/frs.installer
../../7932/l/93058?data-resolve=true&data-manual-id=7932
../../7932/l/93058?data-resolve=true&data-manual-id=7932

sunspotfrcsdk or workbench directories. Files saved in the installation directories for the WPILib
components will likely be overwritten on updates to the tools.

Adding a Connection Indicator

Adding a Connection Indicator

It is often helpful to see if the SmartDashboard is connected to the robot. To add a connection
indicator, select View > Add > Connection Indicator. This indicator will be red when disconnected
and green when connected. To move or resize this indicator, select View > Editable to toggle the
SmartDashboard into editable mode, then drag the center of the indicator to move it or the edges
to resize. Select the Editable item again to lock it in place.

Adding Widgets to the SmartDashboard

Adding Widgets to the SmartDashboard

Widgets are automatically added to the SmartDashboard for each "key" sent by the robot code.
For instructions on adding robot code to write to the SmartDashboard see Displaying Expressions
from Within the Robot Program.

SmartDashboard

Page 7SmartDashboard Last Updated: 09-14-2019

../../7932/l/81106?data-resolve=true&data-manual-id=7932
../../7932/l/81106?data-resolve=true&data-manual-id=7932

Displaying Expressions from Within the Robot
Program

Often debugging or monitoring the status of a robot envolves writing a number of values to
the console and watching them stream by. With SmartDashboard you can put values to a GUI
that is automatically constructed based on your program. As values are updated, the
corresponding GUI element changes value - there is no need to try to catch numbers
streaming by on the screen.

Writing values to the SmartDashboard

Writing values to the SmartDashboard

You can write Boolean, Numeric, or String values to the SmartDashboard by simply calling the
correct method for the type and including the name and the value of the data, no additional code
is required. Any time in your program that you write another value with the same name, it appears
in the same UI element on the screen on the driver station or development computer. As you can
imagine this is a great way of debugging and getting status of your robot as it is operating.

Creating widgets on the SmartDashboard
Widgets are populated on the SmartDashboard automatically, no user intervention is required.
Note that the widgets are only populated when the value is first written, you may need to enable
your robot in a particular mode or trigger a particular code routine for an item to appear. To alter
the appearance of the widget, see the next two sections Changing the Display Properties of a Value
and Changing the Display Widget Type for a Value.

SmartDashboard

Page 8SmartDashboard Last Updated: 09-14-2019

../../7932/l/81107?data-resolve=true&data-manual-id=7932
../../7932/l/81108?data-resolve=true&data-manual-id=7932

Changing the display properties of a value

Each value displayed with SmartDashboard has a a set of properties that effect the way it's
displayed.

Setting the SmartDashboard display into editing mode

Setting the SmartDashboard display into editing mode

The SmartDashboard has two modes it can operate in, display mode and edit mode. In edit mode
you can move around widgets on the screen and edit their properties. To put the SmartDashboard
into edit mode, click the "View" menu, then select "Editable" to turn on edit mode.

Getting the properties editor for a widget

Getting the properties editor for a widget

Once in edit mode, you can display and edit the properties for a widget. Right-click on the widget
and select "Properties...".

Editing the properties on a field

Editing the properties on a field

A dialog box will be shown in response to the "Properties..." menu item on the widgets right-click
context menu.

SmartDashboard

Page 9SmartDashboard Last Updated: 09-14-2019

Editing the widgets background color

Editing the widgets background color

To edit a property value, say, Background color, click the background color shown (in this case
grey), and choose a color from the color editor that pops up. This will be used as the widgets
background color.

Edit properties of other widget types

Edit properties of other widget types

Different widget types have different sets of editable properties to change the appearance. In this
example, the upper and lower limits of the dial and the tick interval are changeable parameters.

SmartDashboard

Page 10SmartDashboard Last Updated: 09-14-2019

Changing the display widget type for a value

You can change the type of widget that displays values with the SmartDashboard. The
allowable widgets depend on the type of the value being displayed.

Set edit mode

Set edit mode

Make sure that the SmartDashboard is in edit mode. This is done by selecting "Editable" from the
"View menu"

Choose the new widget type

Choose the new widget type

Right-click on the widget and select "Change to...". Then pick the type of widget to use for the
particular value. In this case we choose LinePlot.

New widget type is shown for the value

New widget type is shown for the value

The new widget type is displayed. In this case, a Line Plot, will show the values of the Arm angle
value over time. You can set the properties of the graph to make it better fit your data by right-
clicking and selecting "Properties...". See: Changing the display properties of a value.

SmartDashboard

Page 11SmartDashboard Last Updated: 09-14-2019

../../7932/l/81107?data-resolve=true&data-manual-id=7932

Testing commands

Commands represent robot behaviors such as moving an elevator to a position, collecting
balls, shooting, or other tasks. It is desirable to test commands on the robot as they are
written before combining them into more complex commands or incorporating them into
other parts of the robot program. With a single line of code you can display commands on the
SmartDashboard that appear as buttons that run the commands when pressed. This makes
robot debugging a much simpler process than before.

Robot project with a number of commands that need testing

Robot project with a number of commands that need testing

Adding command instances to the SmartDashboard

Adding command instances to the SmartDashboard

Commands in the SmartDashboard

Commands in the SmartDashboard

SmartDashboard

Page 12SmartDashboard Last Updated: 09-14-2019

Choosing an autonomous program from
SmartDashboard

Often teams have more than one autonomous program, either for competitive reasons or for
testing new software. Programs often vary by adding things like time delays, different
strategies, etc. The methods to choose the strategy to run usually involves switches, joystick
buttons, knobs or other hardware based inputs.

With the SmartDashboard you can simply display a widget on the screen to choose the
autonomous program that you would like to run. And with command based programs, that
program is encapsulated in one of several commands. This article shows how to select an
autonomous program with only a few lines of code and a nice looking user interface.

Creating the SendableChooser object in Robot.java

Creating the SendableChooser object in Robot.java

Create a variable to hold a reference to a SendableChooser object. This example also uses a
RobotBuilder variable to hold the Autonomous command.

Set up the SendableChooser in the robotInit() method

Set up the SendableChooser in the robotInit() method

Imagine that you have two autonomous programs to choose between and they are encapsulated
in commands Pickup and ElevatorPickup. To choose between them:

1. Create a SendableChooser object and add instances of the two commands to it. There can be
any number of commands, and the one added as a default (addDefault), becomes the one that
is initially selected. Notice that each command is included in an addDefault() or addObject()
method call on the SendableChooser instance.

SmartDashboard

Page 13SmartDashboard Last Updated: 09-14-2019

2. When the autonomous period starts the SendableChooser object is polled to get the selected
command and that command is scheduled.

Run the scheduler during the autonomous period

Run the scheduler during the autonomous period

RobotBuilder will generate code automatically that runs the scheduler every driver station update
period (about every 20ms). This will cause the selected autonomous command to run.

SmartDashboard display

SmartDashboard display

When the SmartDashboard is run, the choices from the SendableChooser are automatically
displayed. You can simply pick an option before the autonomous period begins and the
corresponding command will run.

Creating a SendableChooser in C++

Creating a SendableChooser in C++

This is an example of creating a SendableChooser object and using it to select between a
Defensive and Offensive autonomous command to run when the autonomous period of the match
starts. Just as in the Java example:

1. Create variables to hold the autonomousCommand pointer and the SendableChooser pointer.
2. the SendableChooser is created and initialized in the RobotInit() method.
3. In the AutonomousInit() method just before the Autonomous code starts running, the choosen

command is retrieved from the SmartDashboard and scheduled.
4. In the AutonomousPeriodic() method, the scheduler is repeatedly run.

SmartDashboard

Page 14SmartDashboard Last Updated: 09-14-2019

Displaying the status of Commands and
Subsystems

If you are using the command-based programming features of WPILib, you will find that they
are very well integrated with SmartDashboard. It can help diagnose what the robot is doing at
any time and it gives you control and a view of what's currently running.

The SmartDashboard command system displays

The SmartDashboard command system displays

With SmartDashboard you can display the status of the commands and subsystems in your robot
program in various ways. The outputs should significantly reduce the debugging time for your
programs. In this picture you can see a number of displays that are possible. Displayed here are:

• The Scheduler currently with "No commands running". In the next example you can see what it
looks like with a few commands running showing the status of the robot.

• A subsystem, "ExampleSubsystem" that indicates that there are currently no commands
running that are "requiring" it. When commands are running, it will indicate the name of the
commands that are using the subsystem.

• A command written to SmartDashboard that shows a "start" button that can be pressed to run
the command. This is an excellent way of testing your commands one at a time.

• And a few data values written to the dashboard to help debug the code that's running.

In the following examples, you'll see what the screen would look like when there are commands
running, and the code that produces this display.

The scheduler display showing a few commands running

The scheduler display showing a few commands running

SmartDashboard

Page 15SmartDashboard Last Updated: 09-14-2019

This is the scheduler status when there are two commands running, "ExampleCommand" and
"newCommand". This replaces the "No commands running." message from the previous screen
image. You can see commands displayed on the dashboard as the program runs and various
commands are triggered.

Displaying the Scheduler status

Displaying the Scheduler status

You can display the status of the Scheduler (the code that schedules your commands to run). This
is easily done by adding a single line to the RobotInit method in your RobotProgram as shown
here. In this example the Scheduler instance is written using the putData method to
SmartDashboard. This line of code produces the display in the previous image.

Displaying the status of a subsystem

Displaying the status of a subsystem

Running commands will "require" subsystems. That is the command is reserving the subsystem for
its exclusive use. If you display a subsystem on SmartDashboard, it will display which command is
currently using it. In this example, "ExampleSubsystem" is in use by "ExampleCommand".

Writing the code to display a subsystem

Writing the code to display a subsystem

In this example we are writing the command instance, "exampleSubsystem" and instance of the
"ExampleSubsystem" class to the SmartDashboard. This causes the display shown in the previous
image. The text field will either contain a few dashes, "---" indicating that no command is current
using this subsystem, or the name of the command currently using this subsystem.

SmartDashboard

Page 16SmartDashboard Last Updated: 09-14-2019

Adding a button to activate a command

Adding a button to activate a command

In this example you can see a button labeled "Autonomous Command". Pressing this button will
run the associated command and is an excellent way of testing commands one at a time without
having to add throw-away test code to your robot program. Adding buttons for each command
makes it simple to test the program, one command at a time.

Code required to create a button to run a command

Code required to create a button to run a command

This is the code required to create a button for the command on SmartDashboard. RobotBuilder
will automatically generate this code for you, but it can easily be done by hand as shown here.
Pressing the button will schedule the command. While the command is running, the button label
changes from "start" to "cancel" and pressing the button will cancel the command.

SmartDashboard

Page 17SmartDashboard Last Updated: 09-14-2019

Setting robot preferences from
SmartDashboard

The Robot Preferences class is used to store values in the flash memory on the cRIO. The
values might be for remembering preferences on the robot such as calibration settings for
potentiometers, PID values, etc. that you would like to change without having to rebuild the
program. The values can be viewed on the SmartDashboard and read and written by the robot
program.

Sample program that reads and writes preference values

Sample program that reads and writes preference values

Often potentiometers are used to measure the angle of an arm or the position of some other
shaft. In this case, the arm has two positions, "ArmUpPosition" and "ArmDownPosition". Usually
programmers create constants in the program that are the two pot values that correspond to the
positions of the arm. When the potentiometer needs to be replaced or adjusted then the program
needs to be edited and reloaded onto the robot.

Rather than having "hard-coded" values in the program the potentiometer settings can be stored
in the preferences file and read by the program when it starts. In this case the values are read on
program startup in the robotInit() method. These values are automatically read from the
preferences file stored in the cRIO flash memory.

Displaying the Preferences widget in SmartDashboard

Displaying the Preferences widget in SmartDashboard

In the SmartDashboard the Preferences display can be added to the display revealing the contents
of the preferences file stored in the cRIO flash memory.

SmartDashboard

Page 18SmartDashboard Last Updated: 09-14-2019

Viewing and editing the preference values

Viewing and editing the preference values

The values are shown here with the default values from the code. This was read from the robot
through the NetworkTables interface built into SmartDashboard. If the values need to be adjusted
they can be edited here and saved. The next time the robot program starts up the new values will
be loaded in the robotInit() method. Each subsequent time the robot starts, the new values will be
retrieved without having to edit and recompile/reload the robot program.

SmartDashboard

Page 19SmartDashboard Last Updated: 09-14-2019

Verifying SmartDashboard is working

Minimal Java robot program

This is a minimal Java robot program that writes a value to the SmartDashboard. It simply
increments a counter 10 times per second to verify that the connection is working.

SmartDashboard

Page 20SmartDashboard Last Updated: 09-14-2019

Minimal C++ robot program

This is a minimal C++ robot program that writes a value to the SmartDashboard. It simply
increments a counter 10 times per second to verify that the connection is working.

SmartDashboard

Page 21SmartDashboard Last Updated: 09-14-2019

SmartDashboard output for the sample program

The SmartDashboard display should look like this after about 6 seconds of the robot being
enabled in Teleop mode. If it doesn't then you need to check that the connection is correctly set
up.

SmartDashboard

Page 22SmartDashboard Last Updated: 09-14-2019

Verifying the IP address in SmartDashboard

If the display of the value is not appearing, verify that the team number is correctly set as shown in
this picture. You get to the preferences dialog by selecting File, then Preferences.

SmartDashboard

Page 23SmartDashboard Last Updated: 09-14-2019

Using TableViewer to verify that the program is working

You can verify that the robot program is generating SmartDashboard values by using the
TableViewer program. This is a java program, TableViewer.jar that is located in the sunspotfrcsdk/
tools folder for NetBeans installations or in C:\WindRiver\WPILib folder for Workbench
installations. It is run with the command: java -jar TableViewer-r355.jar. The version number in
your installation might be different.

Look at the second row in the table, the value "SmartDashboard/Counter" is the variable written to
the SmartDashboard via NetworkTables. As the program runs you should see the value increasing
(44.0 in this case) and the sequence number also increasing (648 in this case). The sequence
number is incremented as new values are written and is a way of keeping multiple clients and
server in sync. If you don't see this variable in the TableViewer then you should look for something
wrong with the robot program or the network configuration.

SmartDashboard

Page 24SmartDashboard Last Updated: 09-14-2019

SmartDashboard 2.0 (SFX)

SmartDashboard

Page 25SmartDashboard Last Updated: 09-14-2019

The new SmartDashboard (SFX)

We have a new SmartDashboard that uses the more modern JavaFX for it's user interface. This
has the promise of much richer user interfaces since it allows the widgets to have style sheets
applied to them and the library is much newer. The new dashboard requires a current version
of Oracle Java 7 (minimum release 7u6) to be installed on your system to get JavaFX.

Installing SFX

The new dashboard is shipped as a zip file called sfx.zip. You must first unzip the file in <your-
home-directory>/sunspotfrcsdk/tools as shown in here. If the sfx folder already exists from a
previous install, delete it before unizipping the newer version.

SmartDashboard

Page 26SmartDashboard Last Updated: 09-14-2019

Running SFX

After unzipping the dashboard, you run run it by double-clicking on sfx.jar. If the .jar file extension
isn't defined on your system (depending on the platform and the java installation) it can also be
run with command line, "java -jar sfx.jar".

SmartDashboard

Page 27SmartDashboard Last Updated: 09-14-2019

The SFX user interface

SFX will start up and automatically display any values written to the dashboard in Autonomous or
Teleoperated modes and will display subsystems or individual controls in Test mode. In the above
example the robot is in Test mode and there are a number of subsystems shown (DriveBase,
Wrist, Elevator, and Gripper) as well as a number of Ungrouped analog inputs that are allocated
but not in any subsystem.

SmartDashboard

Page 28SmartDashboard Last Updated: 09-14-2019

SFX controls

The user interface consists of a number of controls:

1. These controls are for opening the widget palette, creating a new layout, and saving the layout.
2. Tabbed windows are predefined for SmartDashboard and LiveWindow displays. You can also

create your own tabs by pressing the plus (+) button. In the future you'll be able to route
widgets to each of the windows through pattern matching of the name string for the
corresponding values.

3. Settings and the Play button (takes the dashboard in and out of edit mode).

SmartDashboard

Page 29SmartDashboard Last Updated: 09-14-2019

The palette

The palette area is accessed by pressing the plus (+) button and closed with the close button (1).
There is a hierarchical list of values (2) that come from the data source (the running program
SmartDashboard class methods) that can be dragged into onto the screen. Doing this will create a
widget for that value. In addition, you can place widgets on the dashboard and associate them with
values later by selecting from the toolbox sections (3).

The data source button (4) opens a dialog that allows you set the IP address for the robot as well
as map data sources to the dashboard. This is currently unsupported and will be more
completely implemented in a future release.

SmartDashboard

Page 30SmartDashboard Last Updated: 09-14-2019

Editing currently displayed values in the dashboard

Right-clicking on a value brings up a context menu with a number of options for the value being
displayed. You can:

1. Change the stacking order of the widget with respect to other widgets above or below this one.
2. Change this widget into another type of widget (morph) that can display the same value with a

different graphical representation.
3. Delete the widget from the layout. Widgets deleted can be added back in later by selecting

them from the palette.

The widget may also be resized by dragging the resize handles (4) to change the width or height of
the value.

SmartDashboard

Page 31SmartDashboard Last Updated: 09-14-2019

Edit Properties

Clicking on the control selects it and brings up a properties list. Most controls only show a few
basic properties by default, but can show all properties by clicking the "More" button (1) This
shows all properties grouped by type, as well as the decorators section, which is explained next. If
you don't know what a property is, hover over its name for a short description of what it does.
Properties are updated instantly, no need to save.

SmartDashboard

Page 32SmartDashboard Last Updated: 09-14-2019

Adding labels to dashboard widgets

You can "decorate" a widget with a label. To add a label, click on the widget then click on the
"More" button to view the extended properties. From there, click the "Add Decorator" button (1)
and select "labeler" to add a label to the widget. You can then type the label text into the label field
(2) in the property panel for the widget. Select Horizontal to place the label before the control and
vertical to place the label underneath the control.

To later delete the label from the widget, press the red X button to the right of the decorator to be
removed (in this case, the labeler) (3)

SmartDashboard

Page 33SmartDashboard Last Updated: 09-14-2019

Using css styles to modify the look of widgets

Most controls support CSS styling as they use JavaFX primitives. At the present time, you must
enter css rules in a text box, but this will change with a full designer in a future release. All CSS is
JavaFX CSS and is NOT the same as browser CSS. See the JavaFX CSS reference page for
commands.

The above layout was made with a canvas with

-fx-background-color: black;

a ValueMeter with

-fx-background-color: orange;

and two Compasses with

SmartDashboard

Page 34SmartDashboard Last Updated: 09-14-2019

http://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

-fx-effect: dropshadow(gaussian, lime, 30, 0.5, -1, 3);

and different fill and needle colors.

Morphing widgets from one type to another

You can change the type of a widget to another widget of a compatible type. For example, if the
default type for a numeric value is a text field, you can change it to a graph. Right-click on the
widget and select "Morph..." (1) and choose one of the new widget types in the popup window (2).
Only widgets with compatible types will be shown. Note that the conversion attempts to save
properties, but is lossy if the properties have different names or do not exist.

SmartDashboard

Page 35SmartDashboard Last Updated: 09-14-2019

Settings in SFX

There are a number of settings for SFX to set the behavior to match your requirements. The
settings are in 3 panels as shown above. Described below are the options that can be set:

1. General settings - This sets the team number which is used for communications with the
robot. The root panel layout is the default JavaFX layout type that is used for laying out the root
panel in a tab. Changing this will change the way the widgets are placed on the panel when
automatically added as well as your ability to manipulate the widgets once they are placed. The
toolbox option sets how toolbox items will be displayed in the palette (when clicking on the
plus (+) in the lower corner of the screen.

2. Default types - these are the types of widgets that will be automatically created when the
SmartDashboard values are loaded in the "SmartDashboard" tab in sfx. For each type of data,
numeric, boolean, or string select the widget type that should be created.

3. AutoAdd settings - widgets are automatically added to the "SmartDashboard" panel when
they meet the criteria shown in this editor. By default, you can see that names that start with
SmartDashboard in the name are automatically placed.

SmartDashboard

Page 36SmartDashboard Last Updated: 09-14-2019

Tab Switcher

When in run mode, tabs are hidden. LiveWindow will automatically show and hide, however it is
difficult to move between custom tabs. The tab switcher control enables you to switch tabs even
when running. Simply drag it onto a tab from the General toolbox and run. Note you should
probably add it to multiple tabs.

SmartDashboard

Page 37SmartDashboard Last Updated: 09-14-2019

Running & Playback

All controls display data in any mode, but you can only interact with controls in run mode. Hit the
green run button (1) in the bottom right to enter run mode.

Once in run mode, you can either use the dashboard, exit (8), or open playback (2). Playback
continually records changes in data over time and allows you to play these changes back at any
time. When you open playback (3), it pauses all data (though it continues to record in the
background). You can use the media controls (4) to step around the data, and play at speed (which
can be controlled by 5), or drag the slider (6) manually to scrub around. Data can also be saved
using (7) and loaded at another time to save matches, for example. To exit playback, just close the
window (3)

SmartDashboard

Page 38SmartDashboard Last Updated: 09-14-2019

Setting SFX to Launch with the DS

The C++ and Java Dashboard buttons in the Driver Station link to the previously existing
SmartDashboard for the 2014 season. This article details how to set up the DS to launch SFX
instead.

Locate SFX

Locate the path to the SFX jar file on your system. If you have the C++ update installed this is likely
C:\Windriver\WPILib\SFX. For the Java plugins it is likely C:\Users\USERNAME\sunspotfrcsdk\tools\
sfx. Note the full path to the sfx.jar file this will be needed later.

SmartDashboard

Page 39SmartDashboard Last Updated: 09-14-2019

Open FRC DS Data Storage

Make sure the Driver Station is not open, then locate and open FRC DS Data Storage.ini. On
Windows 7 machines this will be in the C:\Users\Public\Documents\FRC folder.

Set Dashboard path

Locate the line that starts with DashboardCmdLine = and replace the value in quotes with "java -
jar SFXPATH" where SFXPATH is the path you noted earlier with all backspaces doubled. An

SmartDashboard

Page 40SmartDashboard Last Updated: 09-14-2019

example of this for the user "koconnor" using the Netbeans plugins is shown in the image above.
Save and close the document.

Set the DS Dashboard Setting

Launch the Driver Station and select the Setup tab. Change the Dashboard Type setting to Default.
This should launch the SFX dashboard. If it does not try closing the DS and re-opening.

Troubleshooting
If the SFX Dashboard does not launch with the DS after following the above steps, try the following:

1. Verify that SFX launches when you double click on the JAR file.
2. Return to the DS Data Storage file and verify that the path there is correct.
3. Open a Command Prompt by clicking Start and typing "cmd" in the box, then clicking Enter.

Copy the path from the DS Data Storage file (including the "java -jar" part) and paste it into the
Command Prompt by right-clicking and selecting Paste. Press Enter and verify that SFX
launches. If it does not you may have an issue with your Java version or the environment
variables which point to the Java install. If this is the case it is recommended to uninstall Java
and complete a fresh install of Java Runtime Engine version 7.

SmartDashboard

Page 41SmartDashboard Last Updated: 09-14-2019

http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html

Creating a custom control using FXML

sfx comes with a palette of built-in controls that feature a wide range of use cases. But
sometimes you would like to further customize your robot dashboard with controls that you
create yourself. There are two strategies for creating custom controls, either:

1. FXML - a XML-based markup language for describing your own controls using a declarative
language without needing programming

2. Java-based controls can have more complex requirements and behaviors

In this lesson we'll look at creating FXML-based controls. For creating Java controls, see the
Java tutorial.

Creating a pneumatic piston position indicator using FXML

Suppose you need to display the position of a pneumatic piston to make it clear to the operators
the state of the piston. Ideally you would draw the piston and show the piston rod either in or out
of the case. Showing it graphically might be much clearer than just having an indicator that was
either red or green. FXML allows you to create more complex drawings and animate them based
on, in this case, a boolean value. The illustration above shows the piston in the in and out position.

In this example we use a 2x3 grid pane to model the piston. When it is extended, the left middle
cell contains a light grey panel that is visible. When it is retracted, that panel is hidden.

SmartDashboard

Page 42SmartDashboard Last Updated: 09-14-2019

Creating the FXML file

FXML is a declarative markup language for describing the graphical properties of your widget. It
lets you specify values for shape, color, position or other properties to describe your widget.

FXML controls have the following structure:

1. Header
2. Base
3. UI & Bindings

The header is made of the XML header and JVM imports to avoid fully qualifying all nodes

<?xml version="1.0" encoding="UTF-8"?>
<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.geometry.*?>
<?import javafx.scene.*?>

SmartDashboard

Page 43SmartDashboard Last Updated: 09-14-2019

<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.shape.*?>

The base is required for SFX controls and abstracts the data management away. The following are
valid bases:

• BooleanControlBase - any boolean-like values (true/false, 1/0, etc...)
• NumberControlBase - any floating point or integral value. Also coerces numbers in strings.
• RangedNumberControlBase - The same as a NumberControlBase but with a min and max value
• StringControlBase - any string value or the toString of any other values

In this case we need a boolean so we use the boolean control base (note we assign it an ID so we
can bind to it later):

<dashfx.controls.bases.BooleanControlBase fx:id="base" xmlns:fx="http://javafx.com/fxml">
</dashfx.controls.bases.BooleanControlBase>

All current bases have a ui property that describes what to show on screen, and this is where we
put all the ui:

 <ui>
 <GridPane prefHeight="50" prefWidth="500">
 <children>
 <Pane visible="${base.value}"
 prefHeight="200.0" prefWidth="200.0"
 style="-fx-background-color: silver;-fx-border-color: black;"
 GridPane.columnIndex="0"
 GridPane.columnSpan="2147483647"
 GridPane.rowIndex="1" />
 <Pane prefHeight="200.0" prefWidth="200.0"
 style="-fx-background-color: gray;-fx-border-color: black;"
 GridPane.columnIndex="1"
 GridPane.rowIndex="0"
 GridPane.rowSpan="2147483647" />
 </children>
 <columnConstraints>
 <ColumnConstraints hgrow="SOMETIMES" minWidth="10.0" prefWidth="100.0" />
 <ColumnConstraints hgrow="SOMETIMES" minWidth="10.0" prefWidth="100.0" />
 </columnConstraints>

SmartDashboard

Page 44SmartDashboard Last Updated: 09-14-2019

 <rowConstraints>
 <RowConstraints minHeight="10.0" prefHeight="30.0" vgrow="SOMETIMES" />
 <RowConstraints minHeight="10.0" prefHeight="30.0" vgrow="SOMETIMES" />
 <RowConstraints minHeight="10.0" prefHeight="30.0" vgrow="SOMETIMES" />
 </rowConstraints>
 </GridPane>
 </ui>

This contains normal FXML and was built with the JavaFX Scene Builder. Note the first pane's
visibility property is bound to the base's value, thus enabling the piston to appear retracted when
the value is false, and extended when true. This is all the FXML needed to define this control.

Registering your control with a manifest

To add your control to the dashboard, you need to package it in a plugin. For FXML controls you
can simply put it in a folder or pack it in a jar. Either way, we need a manifest file that describes
what the plugin contains. Manifests are written in YAML and can contain multiple controls and
other options. For our needs, we will start with this file (please generate your own UUID.
uuidgenerator.net is where the provided UUID was generated)

API: 0.1
Name: Tutorial plugin
Description: Contains all the plugins from the tutorial
Version: 1.0.0
Please generate your own unique UUID and replace it below
Plugin ID: b673b0fe-716a-40ce-b446-70e34aafc509

SmartDashboard

Page 45SmartDashboard Last Updated: 09-14-2019

Controls:
-
 Name: Piston
 Description: Visual piston to display whether piston is in or out.
 Source: /piston.fxml
 Category: Tutorial
 Defaults:
 value: false

This says:

• we are using plugin API version 0.1 (the current version)
• the name of the plugin is "Tutorial plugin" which can be identified by the UUID
• it has one control, the Piston control, which in in the Tutorial category
• it's described by the given fxml file.

Note most fields are optional and many have been left off this simple example. Save the manifest
as manifest.yml. NOTE: YAML expects spaces for indentation, not tabs.

Now register this with SFX. Create a new folder in the sfx/plugins folder in your copy of sfx with the
following layout:

tutorial
 manifest.yml
 piston.fxml

Now when you start sfx, you should be able to use the control. It is recommended to launch from
the terminal with the command:

java -jar sfx.jar

in case there are any errors. All plugins can be viewed under settings>plugins.

SmartDashboard

Page 46SmartDashboard Last Updated: 09-14-2019

Creating a custom control using Java

sfx comes with a palette of built-in controls that feature a wide range of use cases. But
sometimes you would like to further customize your robot dashboard with controls that you
create yourself. There are two strategies for creating custom controls, either:

1. FXML - a XML-based markup language for describing your own controls using a declarative
language without needing programming

2. Java-based controls can have more complex requirements and behaviors

In this lesson we'll look at creating Java-based controls. For FXML controls see the FXML
tutorial.

Creating a X-Y location indicator using Java

SmartDashboard

Page 47SmartDashboard Last Updated: 09-14-2019

Suppose you need to display some object in 2D space, like a vision target from the camera, robot
position on the field, or Joystick position so that field operators can easily see the location. As this
has multiple variables, it is much easier to do this with Java-based controls.

In this simple example, we will be adding an Ellipse to a data-enabled AnchorPane and moving it
based on an object with x and y properties.

Create a Netbeans project

In Netbeans, create a new Java Class Library. Once you create the project, right click it and go to
properties. Inside the properties, select "Libraries" and add sfxlib.jar and sfxmeta.jar (they will
appear in the same directory as sfx.jar after one run). Also add jfxrt.jar, which is system
dependent, but is normally found in $JAVA_HOME/jre/lib/jfxrt.jar

Adding the Control class
Now add a Java source file for your new class (this example will call it xyLocation.java in package
com.example). For our example we will extend DataAnchorPane as it is both data-enabled and

SmartDashboard

Page 48SmartDashboard Last Updated: 09-14-2019

http://docs.oracle.com/javafx/2/api/javafx/scene/shape/Ellipse.html
http://docs.oracle.com/javafx/2/api/javafx/scene/layout/AnchorPane.html

supports positioning children via x and y coordinates. Since Java classes can have annotations, we
can place what FXML files require in manifests in annotations only. Add the following annotation to
the class:

@Category("Tutorial")

This marks the class as being in the toolbox category "Tutorial"

@Designable(value = "X-Y Location", description = "A control to show x/y position in a
range")

This describes this class as being designable in SFX, showing it with the given name and
description

@GroupType("xyLocation")

This says that the control designs all groups of type xyLocation. This is implemented in
NetworkTables by giving a table a sub-key of ~TYPE~ with value xyLocation

@DashFXProperties("Sealed: true, Save Children: false")

This adds any arbitrary manifest attributes to the class. These say to treat this as an atomic object,
even though we are extending a pane that supports designable children.

As we are extending from a data-enabled class (DataAnchorPane), we can simply call
getObservable() on ourselves and not worry too much about it. As we are displaying an object, we
do need to enable the default name-prepending via setDataMode(DataPaneMode.Nested). This
makes all calls to getObservable("x") to retrieve the values under this.getName() + "/x" instead of
just "x".

All controls are given a data source to follow when they are registered with the DataCore, which
then calls registered(). We need to override this so we can get our keys from the provider at this
time.

 @Override
 public void registered(DataCoreProvider provider)
 {
 super.registered(provider);
 unwatch();
 // if we are being registered, then we can finally get the x and y variable

SmartDashboard

Page 49SmartDashboard Last Updated: 09-14-2019

 // otherwise just unwatch as we are being unregistered
 if (provider != null)
 {
 xValue = getObservable("x");
 yValue = getObservable("y");
 rewatch();
 }
 }

In order to enable more complex actions later, we will add listeners to the SmartValues

 private void rewatch()
 {
 xValue.addListener(xchange);
 yValue.addListener(ychange);
 }
 private void unwatch()
 {
 // this function un-binds all the variable
 if (xValue != null)
 xValue.removeListener(xchange);
 if (yValue != null)
 yValue.removeListener(ychange);
 }

xchange and ychange are defined as follows but can easily be extended for multiple other features
and/or calculations

 private ChangeListener ychange = new ChangeListener<Object>() {
 @Override
 public void changed(ObservableValue<? extends Object> ov, Object
t, Object t1)
 {
 ellipse.setCenterY(yValue.getData().asNumber() + 10); //
offset by radius
 }
 },
 xchange = new ChangeListener<Object>() {
 @Override
 public void changed(ObservableValue<? extends Object> ov, Object

SmartDashboard

Page 50SmartDashboard Last Updated: 09-14-2019

t, Object t1)
 {
 ellipse.setCenterX(xValue.getData().asNumber() + 10); //
offset by radius
 }
 };

This simply directly sets the position from the values with a constant offset of the radius. Note that
this does not scale nor have any limits, so the ellipse can move off the canvas. The units are JavaFX
DPI-independent pixels (roughly 1 px at normal dpi with no transforms)

The ellipse is very simple and defined as such:

 // we are displaying results by moving the ellipse. initialize it here
 ellipse = new Ellipse(10, 10, 10, 10);
 ellipse.setFill(Color.LIGHTBLUE);
 this.getChildren().add(ellipse); // we inherited from DAP so just add it
to ourselves

Note that currently there is a small bug in DataPane in that nested mode does not update the
correct keys when the name changes. As such, it is currently required to re-bind on each name
change, however will not be once this bug is fixed

 nameProperty().addListener(new ChangeListener<String>()
 {
 @Override
 public void changed(ObservableValue<? extends String> ov, String
t, String t1)
 {
 unwatch();
 try
 {
 xValue = getObservable("x");
 yValue = getObservable("y");
 rewatch();
 }
 catch(NullPointerException n)
 {
 //fail, ignore, as we must not be registered yet
 }

SmartDashboard

Page 51SmartDashboard Last Updated: 09-14-2019

 }
 });

Creating the manifest to register the control with SFX
To add your control to the dashboard, you need to package it in a plugin. For FXML controls you
can simply put it in a folder or pack it in a jar. Either way, we need a manifest file that describes
what the plugin contains. Manifests are written in YAML and can contain multiple controls and
other options. For our needs, we will start with this file (please generate your own UUID.
uuidgenerator.net is where the provided UUID was generated)

API: 0.1
Name: Tutorial plugin
Description: Contains all the plugins from the tutorial
Version: 1.0.0
Please generate your own unique UUID and replace it below
Plugin ID: b673b0fe-716a-40ce-b446-70e34aafc509
Controls:
-
 Class: com.example.xyLocation

This says:

• we are using plugin API version 0.1 (the current version)
• the name of the plugin is "Tutorial plugin" which can be identified by the UUID
• it has one control, the xyLocation control, which has more information in its annotations

Save the manifest as manifest.yml in the root of the src/ folder. NOTE: YAML expects spaces for
indentation, not tabs.

Now build the project with netbeans, and copy the jar to sfx/plugins/. Now when you start sfx, you
should be able to use the control. It is recommended to launch from the terminal with the
command:

java -jar sfx.jar

in case there are any errors. All plugins can be viewed under settings>plugins.

SmartDashboard

Page 52SmartDashboard Last Updated: 09-14-2019

Test mode and
LiveWindow

SmartDashboard

Page 53SmartDashboard Last Updated: 09-14-2019

Enabling Test mode (LiveWindow)

You may add code to your program to display values for your sensors and actuators while the
robot is in Test mode. This can be selected from the Driver Station whenever the robot is not
on the field. The code to display these values is automatically generated by RobotBuilder and
is described in the next article. Test mode is designed to verify the correct operation of the
sensors and actuators on a robot. In addition it can be used for obtaining setpoints from
sensors such as potentiometers and for tuning PID loops in your code.

Setting Test mode with the Driver Station

Setting Test mode with the Driver Station

Enable Test Mode in the Driver Station by clicking on the "Test" button and setting "Enable" on the
robot. When doing this, the SmartDashboard display will switch to test mode (LiveWindow) and will
display the status of any actuators and sensors used by your program.

Explicitly vs. implicit test mode display

Explicitly vs. implicit test mode display

All sensors and actuators will automatically be displayed on the SmartDashboard in test mode and
will be named using the object type (such as Jaguar, Analog, Victor, etc.) with the module number
and channel number with which the object was created. In addition, the program can explicitly add
sensors and actuators to the test mode display, in which case programmer-defined subsystem and
object names can be specified making the program clearer. This example illustrates explicitly
defining those sensors and actuators in the highlited code.

SmartDashboard

Page 54SmartDashboard Last Updated: 09-14-2019

Understanding what is displayed in Test mode

Understanding what is displayed in Test mode

This is the output in the SmartDashboard display when the robot is placed into test mode. In the
display shown above the objects listed as Ungrouped were implicitly created by WPILib when the
corresponding objects were created. These objects are contained in a subsystem group called
"Ungrouped" (1) and are named with the device type (Analog, Jaguar in this case), and the module
and channel numbers. The objects shown in the "SomeSubsystem" (2) group are explicitly created
by the programmer from the code example in the previous section. These are named in the calls
to LiveWindow.addActuator() and LiveWindow.AddSensor(). Explicitly created sensors and
actuators will be grouped by the specified subsystem.

SmartDashboard

Page 55SmartDashboard Last Updated: 09-14-2019

Displaying LiveWindow values

Typically LiveWindows are displayed as part of the automatically generated RobotBuilder code.
You may also display LiveWindow values by writing the code yourself and adding it to your
robot program. LiveWindow will display values grouped in subsystems. This is a convenient
method of displaying whether they are actual command based program subsystems or just a
grouping that you decide to use in your program.

Adding the necessary code to your program

Adding the necessary code to your program

Get a reference (in Java) or a pointer (in C++) to the LiveWindow object in your program. Then for
each sensor or actuator that is created, add it to the LiveWindow display by either calling
AddActuator or AddSensor (addActuator or addSensor in Java). When the SmartDashboard is put
into LiveWindow mode, it will display the sensors and actuators.

Viewing the display in the SmartDashboard

Viewing the display in the SmartDashboard

The sensors and actuators added to the LiveWindow will be displayed grouped by subsystem. The
subsystem name is just an arbitrary grouping the helping to organize the display of the sensors.
Actuators can be operated by operating the slider for the two motor controllers.

SmartDashboard

Page 56SmartDashboard Last Updated: 09-14-2019

PID Tuning with SmartDashboard

The PID (Proportional, Integral, Differential) is an algorithm for determining the motor speed
based on sensor feedback to reach a setpoint as quickly as possible. For example, a robot with
an elevator that moves to a predetermined position should move there as fast as possible
then stop without excessive overshoot leading to oscillation. Getting the PID controller to
behave this way is called "tuning". The idea is to compute an error value that is the difference
between the current value of the mechanismfeedback element and the desired (setpoint)
value. In the case of the arm, there might be a potentiometer connected to an analog channel
that provides a voltage that is proportional to the position of the arm. The desired value is the
voltage that is predetermined for the position the arm should move to, and the current value
is the voltage for the actual position of the arm.

Finding the setpoint values with LiveWindow

Finding the setpoint values with LiveWindow

Create a PID Subsystem for each mechanism with feedback. The PID Subsystems contain the
actuator (motor) and the feedback sensor (potentiometer in this case). You can use Test mode to
display the subsystem sensors and actuators. Using the slider manually adjust the actuator to each
desired position. Note the sensor values (2) for each of the desired positions. These will become
the setpoints for the PID controller.

Viewing the PIDController in LiveWindow

Viewing the PIDController in LiveWindow

In Test mode the PID Subsystems display their P, I, and D parameters that are set in the code. The
P, I, and D values are the weights applied to the computed error (P), sum of errors over time (I),
and the rate of change of errors (D). Each of those terms is multiplied by the weights and added
together to form the motor value. Choosing the optimal P, I, and D values can be difficult and

SmartDashboard

Page 57SmartDashboard Last Updated: 09-14-2019

requires some amount of experimentation. The Test mode on the robot allows the values to be
modified, and the mechanism response observed.

Tuning the PIDController

Tuning the PIDController

Tuning the PID controller can be difficult and there are many articles that describe techniques that
can be used. It is best to start with the P value first. To try different values fill in a low number for
P, enter a setpoint determined earlier in this document, and note how fast the mechanism
responds. If it responds too slowly, perhaps never reaching the setpoint, increase P. If it responds
too quickly, perhaps oscillating, reduce the P value. Repeat this process until you get a response
that is as fast as possible without oscillation. It's possible that having a P term is all that's needed
to achieve adequate control of your mechanism.

Once you have determined P, I, and D values they can be inserted into the program. You'll find
them either in the properties for the PIDSubsystem in RobotBuilder or in the constructor for the
PID Subsystem in your code.

The F (feedforward) term is used for controlling velocity with a PID controller. You can find more
information in Operating the robot with feedback from sensors.

SmartDashboard

Page 58SmartDashboard Last Updated: 09-14-2019

../../7912/l/79828?data-resolve=true&data-manual-id=7912

SmartDashboard details

SmartDashboard

Page 59SmartDashboard Last Updated: 09-14-2019

Stale data and SmartDashboard

SmartDashboard uses NetworkTables for communicating values between the robot and the
driver station laptop. Network Tables acts as a distributed table of name and value pairs. If a
name/value pair is added to either the client (laptop) or server (robot) it is replicated to the
other. If a name/value pair is deleted from, say, the robot but the SmartDashboard or
TableViewer are still running, then when the robot is restarted, the old values will still appear
in the SmartDashboard and TableViewer because they never stopped running and continue to
have those values in their tables. When the robot restarts, those old values will be replicated to
the robot.

To ensure that the SmartDashboard and TableViewer are showing exactly the same values, it is
necessary to restart all of them at the same time. That way, old values that one is holding
won't get replicated to the others.

This usually isn't a problem if the program isn't constantly changing, but if the program is in
development and the set of keys being added to NetworkTables is constantly changing, then it
might be necessary to do the restart of everything to accurately see what is current.

SmartDashboard

Page 60SmartDashboard Last Updated: 09-14-2019

SmartDashboard namespace

SmartDashboard uses NetworkTables to send data between the robot and the Dashboard
(Driver Station) computer. NetworkTables sends data as name, value pairs, like a distributed
hashtable between the robot and the computer. When a value is changed in one place, its
value is automatically updated in the other place. This mechanism and a standard set of name
(keys) is how data is displayed on the SmartDashboard.

There is a hierarchical structure in the name space creating a set of tables and subtables.
SmartDashboard data is in the SmartDashboard subtable and LiveWindow data is in the
LiveWindow subtable as shown below.

For informational purposes the names and values can be displayed using the TableViewer
application that is installed in the same location as the SmartDashboard. It will display all the
NetworkTable keys and values as they are updated.

SmartDashboard data values

SmartDashboard data values

SmartDashboard values are created with key names that begin with "SmartDashboard/". The
above values viewed with TableViewer correspond to data put to the SmartDashboard with the
following statements:

 chooser = new SendableChooser();
 chooser.addDefault("defaultAuto", new AutonomousCommand());
 chooser.addObject("secondAuto", new AutonomousCommand());
 chooser.addObject("thirdAuto", new AutonomousCommand());
 SmartDashboard.putData("Chooser", chooser);
 SmartDashboard.putNumber("Arm position in degrees", 52.0);
 SmartDashboard.putString("Program Version", "V1.2");

The "Arm position" is created with the putNumber() call. The AutonomousCommand is written with
a putData("Autonomous Command", command) that is not shown in the above code fragement.

SmartDashboard

Page 61SmartDashboard Last Updated: 09-14-2019

The chooser is created as a SendableChooser object and the string value, "Program Version" is
created with the putString() call.

View of the SmartDashboard

View of the SmartDashboard

The code from the previous step generates the table values as shown and the SmartDashboard
display as shown here. The numbers correspond to the NetworkTable variables shown in the
previous step.

LiveWindow data values

LiveWindow data values

LiveWindow data is automatically grouped by subsystem. The data is viewable in the
SmartDashboard when the robot is in Test mode (set on the Driver Station). If you are not writing a
command based program, you can still cause sensors and actuators to be grouped for easy
viewing by specifying the subsystem name. In the above display you can see the key names and
the resultant output in Test mode on the SmartDashboard. All the strings start with "/LiveWindow"
then the Subsystem name, then a group of values that are used to display each element. The code
that generates this LiveWindow display is shown below:

 drivetrainLeft = new Talon(1, 2);
 LiveWindow.addActuator("Drive train", "Left", (Talon) drivetrainLeft);
 drivetrainRight = new Talon(1, 1);
 LiveWindow.addActuator("Drive train", "Right", (Talon) drivetrainRight);
 drivetrainRobotDrive = new RobotDrive(drivetrainLeft, drivetrainRight);
 drivetrainRobotDrive.setSafetyEnabled(false);
 drivetrainRobotDrive.setExpiration(0.1);
 drivetrainRobotDrive.setSensitivity(0.5);
 drivetrainRobotDrive.setMaxOutput(1.0);
 drivetrainUltrasonic = new AnalogChannel(1, 3);
 LiveWindow.addSensor("Drive train", "Ultrasonic", drivetrainUltrasonic);
 elevatorMotor = new Victor(1, 6);
 LiveWindow.addActuator("Elevator", "Motor", (Victor) elevatorMotor);
 elevatorPot = new AnalogChannel(1, 4);

SmartDashboard

Page 62SmartDashboard Last Updated: 09-14-2019

 LiveWindow.addSensor("Elevator", "Pot", elevatorPot);
 wristPot = new AnalogChannel(1, 2);
 LiveWindow.addSensor("Wrist", "Pot", wristPot);
 wristMotor = new Victor(1, 3);
 LiveWindow.addActuator("Wrist", "Motor", (Victor) wristMotor);
 clawMotor = new Victor(1, 5);
 LiveWindow.addActuator("Claw", "Motor", (Victor) clawMotor);

Values that correspond to actuators are not only displayed, but can be set using sliders created in
the SmartDashboard in Test mode.

SmartDashboard

Page 63SmartDashboard Last Updated: 09-14-2019

Using the
SmartDashboard Vision

installer

SmartDashboard

Page 64SmartDashboard Last Updated: 09-14-2019

Smart Dashboard Standalone/Vision Installer

This article details the installation of the SmartDashboard with Vision extensions, including the
configuration of the Driver Station necessary to launch the installed dashboard.

Download the latest Installer
Download the latest version of the installer from this page. As of the last revision of this guide, the
latest installer is version 1.0.3

Run Setup

Run Setup

Locate the downloaded installer (setup.exe) and double-click to launch the installer. Click Run and/
or Yes if one or more security prompts appear. Click Next to proceed.

Install Directory

Install Directory

Seect an install directory the default is recommended, then click Next.

Start Installation

Start Installation

Click Install to begin the installation.

SmartDashboard

Page 65SmartDashboard Last Updated: 09-14-2019

http://firstforge.wpi.edu/sf/frs/do/listReleases/projects.smartdashboard/frs.installer

Installation Complete

Installation Complete

When the installation completes, click Finish to exit the installer.

Locate Driver Station Configuration

Locate Driver Station Configuration

Locate the FRC DS Data Storage.ini file on your PC. On Windows 7 this file should be located in
C:\Users\Public\Documents\FRC and on Windows XP it should be in C:\Documents and Settings\All
Users\Shared Documents\FRC). Double click on the file to open it in Notepad.

Modify the DashboardCmdLine

Modify the DashboardCmdLine

Locate the line beginning with DashboardCmdLine and modify it to point to the installed
SmartDashboard (note that the SmartDashboard is installed to Program Files on both 32 and 64
bit machines, not Program Files (x86)!). Note the double quotes and double slashes used. The
Driver Station should now launch the Smart Dashboard automatically.

Adding a Camera Image to the SmartDashboard

Adding a Camera Image to the SmartDashboard

To add a camera image to the SmartDashboard, click View >> Add >> Camera. The camera IP
address will default to 10.XX.YY.11 where XXYY is the 4 digit version of the configured team
number. If you need to change this IP, make sure the Dashboard is set to Editable (also in the View
menu), then right click on the Camera widget and select Properties.

SmartDashboard

Page 66SmartDashboard Last Updated: 09-14-2019

Anonymous Viewing

Anonymous Viewing

The most common cause of camera connection issues with the SamrtDashboard is not setting the
camera to accept anonymous connections. For more information on setting the camera to receive
anonymous connections see the Configuring an Access Camera document.

Possible problems getting the camera to work

Possible problems getting the camera to work

If you are using the camera plugin for SmartDashboard there are a few common errors that
prevent it from working:

1. Be sure that you have set the camera for Anonymous viewing from the previous step.
2. Be sure to add the camera as shown a few steps back with the correct IP address.
3. Be sure to run the version of the SmartDashboard from the start menu - not the one in

the sunspotfrcsdk/tools folder.

Camera not appearing on 64-bit Windows systems

Camera not appearing on 64-bit Windows systems

If you try to load the camera extension and everything is configured correctly as shown in the
previous steps, the problem might be a mismatch between the SmartDashboard extensions and
your JVM. Run the SmartDashboard in the CMD window as shown here. If you see the error shown
here, then the problem is that it is running with a 64-bit JVM and trying to load 32-bit plugins.

1. Change the current directory to the SmartDashboard installation directory.
2. Run the SmartDashboard using the "java -jar" command.
3. If you see this error, then the problem is the 64-bit JVM.

SmartDashboard

Page 67SmartDashboard Last Updated: 09-14-2019

../../8559/l/89729?data-resolve-url=true&data-manual-id=8559

Running the SmartDashboard with 32 bit Java

Running the SmartDashboard with 32 bit Java

If you have both the 64 bit and 32 bit Java installed on your system, you can create a .CMD
(command) file that will run SmartDashboard using the 32-bit Java installation. Find the 32-bit Java
installation, probably in \Program Files (x86)\Java\jre7\bin\javaw.exe and note the path to
javaw.exe. Then create a command file in the SmartDashboard installation directory (\Program
Files\SmartDashboard) that is as shown in the illustration above. Make sure the paths in this file
match the ones on your system. You can then copy and paste this command file to the Start Menu
on your system and use it when you need to run SmartDashboard.

We'll try to have a better solution for this soon, but this will get you going.

SmartDashboard

Page 68SmartDashboard Last Updated: 09-14-2019

Viewing the RoboRealm output in
SmartDashboard

RoboRealm is a vision processing application that runs on a Windows PC connected to the
robot via a network connection. It can read the camera stream, process images and send
results back to the robot. It is often desirable to see the results of the image processing on
your driver station laptop, but screen real estate is at a premium. You can display images from
RoboRealm on the SmartDashboard by using it's internal web server as shown in this article.

Set up the Axis camera in RoboRealm

Set up the Axis camera in RoboRealm

Start RoboRealm and (1) search for Axis_internet_Camera and (2) add the Axis camera to the
program. You'll see a popup of the camera properties. Set (3) the camera IP address (10.TE.AM.11),
the (4) Username and Password to FRC and the (5) Resolution to 320x240, and hit (6) Start. You
should see the image appear in the RoboRealm window. Hit OK to dismiss the Axis Internet
Camera properties.

Enable the RoboRealm web server

Enable the RoboRealm web server

Do the following steps to set up the RoboRealm web server which will serve the processed image:

1. Click Options
2. Activate the RoboRealm web server
3. Set the port number to 80
4. Set the Max Connections to 5 for testing
5. Set the Min FPS to 25

And click OK to save the settings and start the web server.

SmartDashboard

Page 69SmartDashboard Last Updated: 09-14-2019

Verify that the web server is running

Verify that the web server is running

Verify the web server is running by opening up a browser on the system and entering the URL:
127.0.0.1. This is the address of this system (localhost) and should show the same image that
RoboRealm is displaying.

Run SmartDashboard

Run SmartDashboard

Run the version of SmartDashboard from the Windows Start Menu. This is the one in Program
Files that has the camera extension installed.

Add the camera to the SmartDashboard display

Add the camera to the SmartDashboard display

Add the camera display window to SmartDashboard. If you don't see the Camera in the Add...
menu be sure you are running the version of the SmartDashboard that was installed using the
SmartDashboard installer located here: http://firstforge.wpi.edu/sf/frs/do/listReleases/
projects.smartdashboard/frs.installer.

Set the camera plugin IP address

Set the camera plugin IP address

Verify that the camera IP address is set correctly by:

1. Selecting "View" then "Editable" to make the camera image properties accessible. Then right-
click on the image and select Properties. Set the system IP address in the Camera IP Address

SmartDashboard

Page 70SmartDashboard Last Updated: 09-14-2019

http://firstforge.wpi.edu/sf/frs/do/listReleases/projects.smartdashboard/frs.installer
http://firstforge.wpi.edu/sf/frs/do/listReleases/projects.smartdashboard/frs.installer
http://firstforge.wpi.edu/sf/frs/do/listReleases/projects.smartdashboard/frs.installer

field. This will be viewing the RoboRealm web server just as in the previous steps with the
browser.

View the RoboRealm image

View the RoboRealm image

You should now see the RoboRealm image in both the Web Browser and in SmartDashboard at
the same time.

SmartDashboard

Page 71SmartDashboard Last Updated: 09-14-2019

	SmartDashboard
	Getting Started with the SmartDashboard
	What is the SmartDashboard?
	Installing the SmartDashboard
	Configuring the Team Number
	Locating the Save File
	Adding a Connection Indicator
	Adding Widgets to the SmartDashboard

	Displaying Expressions from Within the Robot Program
	Writing values to the SmartDashboard
	Creating widgets on the SmartDashboard

	Changing the display properties of a value
	Setting the SmartDashboard display into editing mode
	Getting the properties editor for a widget
	Editing the properties on a field
	Editing the widgets background color
	Edit properties of other widget types

	Changing the display widget type for a value
	Set edit mode
	Choose the new widget type
	New widget type is shown for the value

	Testing commands
	Robot project with a number of commands that need testing
	Adding command instances to the SmartDashboard
	Commands in the SmartDashboard

	Choosing an autonomous program from SmartDashboard
	Creating the SendableChooser object in Robot.java
	Set up the SendableChooser in the robotInit() method
	Run the scheduler during the autonomous period
	SmartDashboard display
	Creating a SendableChooser in C++

	Displaying the status of Commands and Subsystems
	The SmartDashboard command system displays
	The scheduler display showing a few commands running
	Displaying the Scheduler status
	Displaying the status of a subsystem
	Writing the code to display a subsystem
	Adding a button to activate a command
	Code required to create a button to run a command

	Setting robot preferences from SmartDashboard
	Sample program that reads and writes preference values
	Displaying the Preferences widget in SmartDashboard
	Viewing and editing the preference values

	Verifying SmartDashboard is working
	Minimal Java robot program
	Minimal C++ robot program
	SmartDashboard output for the sample program
	Verifying the IP address in SmartDashboard
	Using TableViewer to verify that the program is working

	SmartDashboard 2.0 (SFX)
	The new SmartDashboard (SFX)
	Installing SFX
	Running SFX
	The SFX user interface
	SFX controls
	The palette
	Editing currently displayed values in the dashboard
	Edit Properties
	Adding labels to dashboard widgets
	Using css styles to modify the look of widgets
	Morphing widgets from one type to another
	Settings in SFX
	Tab Switcher
	Running & Playback

	Setting SFX to Launch with the DS
	Locate SFX
	Open FRC DS Data Storage
	Set Dashboard path
	Set the DS Dashboard Setting
	Troubleshooting

	Creating a custom control using FXML
	Creating a pneumatic piston position indicator using FXML
	Creating the FXML file
	Registering your control with a manifest

	Creating a custom control using Java
	Creating a X-Y location indicator using Java
	Create a Netbeans project
	Adding the Control class
	Creating the manifest to register the control with SFX

	Test mode and LiveWindow
	Enabling Test mode (LiveWindow)
	Setting Test mode with the Driver Station
	Explicitly vs. implicit test mode display
	Understanding what is displayed in Test mode

	Displaying LiveWindow values
	Adding the necessary code to your program
	Viewing the display in the SmartDashboard

	PID Tuning with SmartDashboard
	Finding the setpoint values with LiveWindow
	Viewing the PIDController in LiveWindow
	Tuning the PIDController

	SmartDashboard details
	Stale data and SmartDashboard
	SmartDashboard namespace
	SmartDashboard data values
	View of the SmartDashboard
	LiveWindow data values

	Using the SmartDashboard Vision installer
	Smart Dashboard Standalone/Vision Installer
	Download the latest Installer
	Run Setup
	Install Directory
	Start Installation
	Installation Complete
	Locate Driver Station Configuration
	Modify the DashboardCmdLine
	Adding a Camera Image to the SmartDashboard
	Anonymous Viewing
	Possible problems getting the camera to work
	Camera not appearing on 64-bit Windows systems
	Running the SmartDashboard with 32 bit Java

	Viewing the RoboRealm output in SmartDashboard
	Set up the Axis camera in RoboRealm
	Enable the RoboRealm web server
	Verify that the web server is running
	Run SmartDashboard
	Add the camera to the SmartDashboard display
	Set the camera plugin IP address
	View the RoboRealm image

