
GETTING STARTED WITH JAVA

Last Updated: 10-03-2019

Table of Contents

Setting up the Development Environment ..3
Installing the Java development tools ...4

Configuring the NetBeans installation ... 11

Understanding the program download process .. 12

Creating Robot Programs ... 14
The "Hello world" of FRC robot programming .. 15

Running the program on the robot .. 20

Debugging a Robot Program ... 23

Java conventions for objects, methods and variables .. 26

Accessing and Using the Javadocs .. 28

Beyond the Basics .. 30
Your Second Program and beyond .. 31

Building with a custom version of the WPILib source code 33

Getting started with Java

Setting up the
Development
Environment

Getting started with Java

Page 3Getting started with Java Last Updated: 10-03-2019

Installing the Java development tools

The development tools necessary for building Java robot programs consist of the Java Software
Developers Kit, Netbeans (the Interactive Development Environment), and the FRC Plugins for
Netbeans that add the necessary FRC specific components.

We have been testing with Java SE SDK version 7+ and NetBeans version 7.2, 7.3, and 7.4.
While we believe everything will work with previous versions we have not tested all the
combinations. We suggest that you upgrade earlier versions to these to ensure you are
running on a tested combination.

If you already have Netbeans installed, skip down to "Un-installing the previous version
of the plugins".

Installing the Java / NetBeans Cobundle (installing Java and
NetBeans in one step)

Getting started with Java

Page 4Getting started with Java Last Updated: 10-03-2019

The easiest way to install Netbeans for FRC is to use the JDK/Netbeans co-bundle provided by
Oracle. If you do not already have a JDK installed or do not know if you have JDK installed, it is
recommended to use this option.

You can find the current cobundle installer here: http://www.oracle.com/technetwork/java/javase/
downloads/index.html. After installing the co-bundle that matches your platform, skip to
"Installing the Netbeans plugins".

Download and install NetBeans

Download and install NetBeans

Only if you already have a JDK installed and did not install the Co-bundle above!

Download and install the version of NetBeans that supports Java SE development from
https://netbeans.org/downloads/. There are many versions with other built-in development tools,
but the smallest one is all that is required. The installation instructions will vary with the type of
development system you have. After you have completed the Netbeans install, skip to "Installing
the NetBeans plugins".

Getting started with Java

Page 5Getting started with Java Last Updated: 10-03-2019

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://netbeans.org/downloads/

Uninstalling the previous version of the plugins

If this is a new installation of NetBeans you can skip this step.

If you had a previous version of the NetBeans plugins installed, they must first be uninstalled. If
they are installed uninstall them by going to the Plugins window in NetBeans, selecting the 6 FRC
plugins from the "Installed" tab, then click "Uninstall" to remove the plugins from NetBeans.

Getting started with Java

Page 6Getting started with Java Last Updated: 10-03-2019

Delete the SunspotFRCSDK directory

After un-installing the NetBeans plugins locate and delete the SunspotFRCSDK directory on your
machine. For Windows 7 and 8 users this directory is located in the User directory of the user
where you installed NetBeans.

Installing the NetBeans plugins
The plugins should be installed in one of two ways:

Installing from the plugin location - this is the best way to install the plugins since NetBeans will
automatically remind you to update when new versions are posted. In this case proceed to the
next step in these directions.

Installing from your local disk - this method should be chosen only if your development
computer doesn't have internet access and you need to bring in the plugins from home or other
internet enabled location. In this case, you will not be reminded to update your plugins when new
versions are posted, you'll have to watch the FIRST blogs and team email blasts. To choose this
option, skip to "Downloading the plugins".

Getting started with Java

Page 7Getting started with Java Last Updated: 10-03-2019

Setting the internet plugin location in NetBeans

Installing the plugins from the internet is best since NetBeans will look for updates when they are
available and automatically offer to install them. If you don't have access to the Internet for your
development computer go onto the step "Downloading the plugins" to get the plugins and to set a
local filesystem installation path.

To install from the Internet start NetBeans and choose Tools/Plugins from the menu. Click the
"Settings" tab on the Plugins window (1) and select "Add" (2). Enter a name for the plugins, like
"FRC plugins" and enter the URL "http://first.wpi.edu/FRC/java/netbeans/update/Release/
updates.xml" (3). Then click "OK" (4) to add WPLILib to the list of available plugins.

Adding the plugins to NetBeans

Adding the plugins to NetBeans

Getting started with Java

Page 8Getting started with Java Last Updated: 10-03-2019

http://first.wpi.edu/FRC/java/netbeans/update/Release/updates.xml
http://first.wpi.edu/FRC/java/netbeans/update/Release/updates.xml

On the "Available Plugins" tab select the 6 FRC Java plugins then click Install. Finish the installation
process by continuing through several windows. Then, when asked, select "Restart IDE Now". This
will restart NetBeans and the Java for FRC Plugins will be installed. Skip to the step, "Installing the
LabVIEW support components".

Downloading the plugins

Downloading the plugins

These following steps are for downloading the plugins via a web browser. If you installed the
plugins using the previous steps, then skip to "Installing the LabVIEW support components".

Using a web browser navigate to the plugin location: http://first.wpi.edu/FRC/java/netbeans/
update/Release. You will see 6 .nbm files listed. Download each of these files to a location on your
computer. If you are downloading the plugins on a computer that is not your development system,
copy the files onto a flash drive and bring them to the development system.

Set the local path to the downloaded plugins

Getting started with Java

Page 9Getting started with Java Last Updated: 10-03-2019

Make the downloaded plugins available to NetBeans by following these steps:

1. Select the Plugins dialog by clicking on the "Tools" then "Plugins" menu items from the menu
bar. Then choose the "Downloaded" tab.

2. Click on "Add Plugins..."
3. Choose the locations where you downloaded them. Select the 6 NBM files that were

downloaded as shown in the screen shot above.
4. Click "Open" to add the plugin locations to NetBeans.

Installing the downloaded plugins

Installing the downloaded plugins

You should see the 6 downloaded plugins highlighted with the Install box checked on each of
them. Click "Install" to add them to NetBeans. Accept all the default options and allow NetBeans to
restart when you are given the option. Look out for notices of updates to the plugins and repeat
these steps if an update is published.

Installing the LabVIEW support components
In addition to the Java development tools you need to also install the LabVIEW support
components such as the Driver Station, Imaging Tool, and others onto your system. See Installing
the 2014 NI FRC Update for details on installing these components.

Getting started with Java

Page 10Getting started with Java Last Updated: 10-03-2019

../../8559/l/89639?data-resolve-url=true&data-manual-id=8559
../../8559/l/89639?data-resolve-url=true&data-manual-id=8559

Configuring the NetBeans installation

Netbeans needs to be configured to be able to download and run programs on your robot.
Once configured, it can be used to run any program with the same team number.

Setting the team number

Select the preferences (or options) panel from the NetBeans menu. The method of selecting the
preferences depends on the platform. Select the Miscellaneous tab, then the FRC Configuration
panel, then fill in the team number. This will configure NetBeans so that it can download code to
your robot. The team number is used to determine the robot IP address. Click "OK" when finished
to save the changes.

Getting started with Java

Page 11Getting started with Java Last Updated: 10-03-2019

Understanding the program download
process

The Netbeans FRC plugins will use FTP to download a program to the robot. It relies on a
program called the "OTA Server" on the robot to force the robot to reboot after the download
is complete. The first time you download a program after reimaging the cRIO the OTA server is
downloaded along with your program. Since it was not running you have to manually reboot
the robot the first time after the reimaging. After that, it will reboot automatically since the
OTA server will start up when the robot boots.

What you will see the first time running a Java program after
re-imaging the cRIO

What you will see the first time running a Java program after re-imaging the cRIO

This shows the output from NetBeans as it downloads the program to the cRiO. The steps are:

1. Build the project
2. Verify the development system IP addresses. In this case there are several interfaces because

the system is a Mac running a Windows virtual machine. Normally there won't be that many
interfaces.

3. The downloader noticed that the version of the OTA server is not correct or missing and
deploys a new copy. Then it downloads image.suite (the user program).

4. NetBeans waits for the cRIO to reboot. It won't complete since the OTA server is just being
downloaded for the first time. This is the case where a manual boot is required.

Subsequent downloads of the Java program

Subsequent downloads of the Java program

In this case, after the OTA server is installed you'll see something like this:

Getting started with Java

Page 12Getting started with Java Last Updated: 10-03-2019

1. The development computer network interface checks, same as before.
2. This time, the correct JVM and OTA server are deployed so that step is skipped from before. Just

the user program is downloaded.
3. The cRIO reboots and takes between 7-12 seconds.
4. You start seeing startup messages from VxWorks and the LabVIEW runtime components. Also

there are messages that verify the FPGA version (FPGA Hardware version and GUID).
5. The program has loaded, and in this case there is no programmer supplied "disabled()" method

so the default version of the disabled() method is run from the library and it prints a message
to inform you that this is happening. If you see messages saying that the default autonomous()
or operatorControl() methods running, that it indicates that the program hasn't correctly
overridden those methods. This program is built using the SimepleRobotTemplate and you'll
see similar messages corresponding to the default methods in the default template that you
chose.

Getting started with Java

Page 13Getting started with Java Last Updated: 10-03-2019

Creating Robot Programs

Getting started with Java

Page 14Getting started with Java Last Updated: 10-03-2019

The "Hello world" of FRC robot programming

Here's how to create the shortest possible robot program that actually does something useful.
In this case, it provides tank steering in teleop mode and drives a few feet and stops in
autonomous mode. This program uses the SimpleRobotTemplate which lets you write very
simple programs very easily. For larger programs we recommend using the
CommandBasedRobot template and RobotBuilder.

Create the project

Create the project

Start NetBeans running. In the left pane labeled "Projects" right-click and select "New Project..."

Select the project template

Select the project template

There a number of project types that you can use to get started with your robot project. The
simplest one to use is SimpleRobotTemplateProject. Select this option and click "Next>".

Fill in the project information

Fill in the project information

Fill out the "Name and Location" form. The Project Name will be the name you see in NetBeans for
your project. The Robot Class will be the name of the class that is created that will be a subclass of
SimpleRobot. You can also set the Project Location (directory) the name of the Project Folder and
the Java package that is used for your classes. For testing it's OK to just take all the defaults. Then
click "Finish".

Getting started with Java

Page 15Getting started with Java Last Updated: 10-03-2019

The project is created in the Projects window in NetBeans

The project is created in the Projects window in NetBeans

Notice that the project is now created (MyRobotProject) with a "src" folder that contains the the
class name specified in the previous step in the packa listed in the previous step. You can double-
click on the source file "RobotTemplate.java" in this case to see the default code.

Reviewing the generated source file

Reviewing the generated source file

Look at the generated source file for your project (the comments are removed from this example
to make it better fit on the screen). Notice that there are two methods as part of the main class.

1. The autonomous() method - this is where you place all the code that you would like to have the
robot run while it is in autonomous mode. The code should run until it is finished, but be sure
to exit the method before the time runs out for the autonomous period of the match. If not,
your teleop code will be delayed until the autonomous method returns.

2. The operatorControl() method - the code in this method runs when the robot is placed into
teleop mode. Typically this code just loops reading sensor and controls values and drives
actuators until the end of the operator control period.

Setting the Main Project

Setting the Main Project

It's a good idea to set the project that you are currently working on as the "Main Project". This is
the one that will automatically be deployed to the robot and run when you press the green "Play"
button.

Getting started with Java

Page 16Getting started with Java Last Updated: 10-03-2019

Setting the Main Project (Netbeans 7.1 and earlier)

Setting the Main Project (Netbeans 7.1 and earlier)

To set the Main Project in Netbeans 7.1 or earlier, right-click on the project name and select "Set as
Main Project". The current main project will be shown in the list in bold type.

Setting the Main Project (Netbeans 7.2)

Setting the Main Project (Netbeans 7.2)

To set the Main Project in Netbeans 7.2, click on the Run menu, hover over "Set Main Project" then
click on the desired project.

Create the RobotDrive and Joystick objects

Create the RobotDrive and Joystick objects

To use components on the robot such as motors, joysticks and sensors you must create objects for
each of them. In this case we are using two Joysticks and a RobotDrive object that handles the 2
Jaguar controlled motors in our robot base.

1. To use these objects you need to add import statements to the start of your program that tells
Java that you are going to use those objects and the classes are defined as part of WPILib. A
shortcut to adding these import declarations is to start typing the name of the class where you
are using it (step 2) and before it's complete, type ctrl-space. This will complete the name
automatically and add the import declaration if necessary.

2. Add the declarations to create the RobotDrive object with the 2 Jaguar speed controllers
connected to PWM ports 1 and 2 on the first digital module (If your robot has 4 motor
controllers or the motor controllers are connected to different ports, make sure to change this
line accordingly. The constructors are ordered left motor(s) then right motor(s).). Also the two
joysticks connected to USB channels 1 and 2. You can reorder the joysticks in the driver station
when they are plugged in.

Getting started with Java

Page 17Getting started with Java Last Updated: 10-03-2019

Fill in the autonomous part of the program

Fill in the autonomous part of the program

The sample autonomous program here drives the program drives the robot at half speed (-0.5)
and a turn rate of (0.0). A negative speed is used to make the robot drive forward because the
joysticks provided in the Kit of Parts (and most other HID joysticks and gamepads) return a
negative value when pushed forwards. Then the program delays for 2.0 seconds while the robot
continues to drive at half speed. After the delay tell the RobotDrive object to stop (drive 0.0 speed
forward).

The first line of the method disables motor safety for the autonomous program. Motor safety is a
mechanism built into the RobotDrive object that will turn off the motors if the program doesn't
continuously update the motor speed. In this case, the speed is updated once, then there is a 2
second delay before it's updated again. The default setting for motor safety is to require an update
every 100 ms. By turning off motor safety, it will prevent the motors from turning off after the first
0.1 seconds.

Fill in the teleop part of the program

Fill in the teleop part of the program

The teleop part of program turns motor safety back on. This will cause the robot to stop driving if
the program were to stop running for any reason since the code would stop updating the motor
speeds. Then it loops with the RobotDrive object providing tank steering with the two joysticks. The
loop continues until the teleop period ends.

Inverting Motors

Getting started with Java

Page 18Getting started with Java Last Updated: 10-03-2019

Depending on the wiring and construction of your robot, it is possible that you will need to invert
the direction of one or motors in your code in order to have all motors spinning the correct
direction. If pushing the joystick directly away from you results in anything other than the robot
driving forward, one or more motors needs to be inverted. If you have 2 motors in the Robot Drive,
invert the side of the robot that moves in the wrong direction. Note that the Robot Drive object
refers to the single motor in a 2 motor drive as the rear motor.

If you have 4 motors in your Robot Drive and one side drives the wrong way, invert both motors
on that side. If you have 4 motors and one side of the drive appears to not move at all when
commanded the motors may be fighting each other, try inverting one of the two motors and
observing if that side of the drive now moves when commanded.

Getting started with Java

Page 19Getting started with Java Last Updated: 10-03-2019

Running the program on the robot

Once the program is finished and NetBeans is configured the program can be run very easily.
There are a few things you should know about running the program immediately after flashing
a new image onto the cRIO that are described here.

Running the program

Running the program

Make sure the program is set as the main program, indicated in bold in the left pane (see
instructions in the previous article). To run the program simply click on the green right-facing
triangle. When you do this you'll see messages about the program building in the "Output" window
(usually at the bottom of NetBeans). Then the robot reboots, and the program starts. These steps
with their associated messages are shown below.

Getting ready to transfer the program to the robot

Getting ready to transfer the program to the robot

NetBeans verifies that there is a network interface on the development computer that is on the
same subnet as the robot. In this case since we have set NetBeans and the robot to Team 190,
then NetBeans notices that the development computer assigned IP address is 10.1.90.100 the
same subnet as the robot (10.1.90.2).

Transfering the program to the robot

Transfering the program to the robot

Getting started with Java

Page 20Getting started with Java Last Updated: 10-03-2019

../../7885/l/79459?data-resolve=true&data-manual-id=7885

NetBeans then uses FTP to send the program to the robot. You can see the IP address of the robot
(10.1.90.2) and it is transfering a file called image.suite, the default name for the program. Then
the cRIO is rebooted.

Rebooting the cRIO

Rebooting the cRIO

It takes about 12 seconds before the cRIO has rebooted enough to start echoing status message in
the NetBeans Output window. You can see the NetBeans plugin counting the time as the robot is
rebooting. When it finally starts running again, the counting messages stop and are replaced by
status messages.

Important: the first time you run a program after reimaging the cRIO you'll see the counting
messages going on forever. This is because the OTA server (the robot code that handles
rebooting the cRIO) hasn't yet started. It gets downloaded with the first program you try to run, but
it only starts when the robot reboots. So if you just reimaged the cRIO you must manually reboot
the robot manually the first time you run a program to get the OTA server started, then
subsequent downloads with that image will work correctly. When you see the "Waiting for cRIO"
messages going well past 12 seconds, manually reboot the robot and everything should start
working properly after that.

Robot program is now running
After a number of status messages you should see an announcement from the OTA Server that it
is running. You might also see some messages indicating that the "Default robotInit() method is
running" and "Default disabled() method is running". This tells you that your program hasn't
supplied your own implementation of these methods in the SimpleRobot main class. This is not
important and would only be a problem if you thought that your program was overriding those
built-in methods.

You can now test your robot program by enabling the robot in either teleop or autonomous
modes using the Driver Station. You might see additional messages in this window if your program
throws an exception or if you have some debug printing.

Caution: when testing a robot be sure that it is on blocks and the wheels are free to turn.
This will prevent the robot from driving away from you in case there are programming
errors.

Getting started with Java

Page 21Getting started with Java Last Updated: 10-03-2019

If you've programmed a robot with this sample program it can be tested at this point. Set the robot
in Teleop mode and verify that the joysticks control the motors. You can operate the left joystick
and verify that pushing forward operates the left side motor(s) in the forward direction. If the left
joystick operates the right motors then either the joysticks need to be swapped or the PWM cables
going to the speed controllers. Pulling the joysticks back the motors should operate backwards. If
the motor directions are reversed look for the setInvertedMotors() method on the RobotDrive
class to invert the direction of one or more motors.

Verify that the autonomous program works by setting the robot into Autonomous mode and the
robot should drive forwards for 2 seconds.

Getting started with Java

Page 22Getting started with Java Last Updated: 10-03-2019

Debugging a Robot Program

Debugging the robot program is slightly more complex and can't be used during the
competition matches, but can be a very helpful technique for troubleshooting issues with a
robot program. Debugging allows you to stop, start and step through the execution of a
program and view the values of program variables as you do so. To debug an FRC Java
program, first the program has to start, and then you must attach the NetBeans debugger to
the running program.

Placing a Breakpoint

Placing a Breakpoint

Place a breakpoint that you expect to hit by clicking in the gray area to the left of the desired
source code line. A breakpoint will cause the code to pause execution when it is reached, allowing
the user to view variable values before either resuming execution or stepping through execution
one line at a time. You can additional breakpoints in this step if desired.

Running the program in Debug Mode

Running the program in Debug Mode

Make sure the program is set as the main program (it will be shown in bold in the left pane, see
here for instructions), then click the Debug button in the toolbar.

Wait to connect the Debugger

Wait to connect the Debugger

Getting started with Java

Page 23Getting started with Java Last Updated: 10-03-2019

../../7885/l/79459?data-resolve=true&data-manual-id=7885

Wait until the output window displays “Waiting for connection from debugger on
serversocket://:2900". This is when the program will try to connect to the debugger.

Attach Debugger

Attach Debugger

Select the Debug menu from the top of the screen and click "Attach Debugger". Make sure the
debug options match the ones shown in the picture, then click OK.

Debugger Connected

Debugger Connected

When the debugger completes the connection, Netbeans should automatically switch the left pane
to the Debugging tab and display the running tasks. The bottom pane will switch to the Variables
tab which displays variables currently in scope.

Run to Breakpoint

Run to Breakpoint

To reach your breakpoint, you may need to connect the Driver Station and enable the robot in the
appropriate mode (autonomous, teleop, etc.). When the program reaches a breakpoint, the
execution will be paused, the line of code will be highlighted in green, and the Variables tab will be
populated with the variables currently in scope. To see all the variables, you may need to expand
the tree.

Control Program Execution

Control Program Execution

After you have reached your breakpoint you can now control the flow of program execution using
the buttons in the toolbar or their associated keyboard shortcuts:

Getting started with Java

Page 24Getting started with Java Last Updated: 10-03-2019

1. Finish Debugger Section (Shift+F5) - Terminates the code and closes the debugging connection
2. Pause - Pauses program execution at the current point
3. Continue (F5) - Resumes program execution. The program will execute freely until it reaches a

breakpoint or is paused.
4. Step Over (F8) - Steps through one source line, stepping over any method calls.
5. Step Over Expression (Shift+F8) - Steps through one method call in a source line. The value of

the method call can then be viewed in the Variables window.
6. Step Into (F7) - Executes one method call in a source line. This will step down into the method.
7. Step Out (Ctrl+F7) - Executes one source-line. If the line is part of a a method, executes the rest

of the method and returns to the caller.

You can also set or remove breakpoints while the program is running or stopped at a breakpoint.

Using NetConsole for debugging
Code can also be debugged by using System.out.print statements and receiving them with either
the NetBeans console or with NetConsole (note: do not try to use both simultaneously, only
use Netbeans OR the NetConsole at one time). For more information on using NetConsole see
here.

Getting started with Java

Page 25Getting started with Java Last Updated: 10-03-2019

../../8851/l/?data-resolve=true&data-manual-id=8851

Java conventions for objects, methods and
variables

Creating objects that are connected to the cRIO in Java

Creating objects that are connected to the cRIO in Java

Generally all the objects in WPILib that connect to one of the cRIO breakout boards have one or
two arguments in the constructor when created where you specify the channel or port number it is
connected to. The above example illustrate the conventions used in WPILib for both C++ and Java.

1. Creates a Gyro object connected to analog module 1 channel 1 and stores its address in
"headingGyro". For convenience if only a single number is specified it is assumed to be for the
first module of a given type (in this case an analog module) and the number is the channel or
port number.

2. Creates a DigitalInput object connected to the 2nd installed digital module using channel 3 and
stores the address in the variable "limitSwitch".

3. Gets the current heading from the Gyro in degrees and stores it in the variable "heading".

Creating operator interface objects in Java

Creating operator interface objects in Java

Generally objects connected to the Driver station PC via USB (with the exception of the Cypress
FIRST Touch board and Microsoft Kinect) take a single argument indicating the USB port they are
connected to. A single Joystick class is provided which should provide the functionality needed to
interface with any joystick or gamepad which works with the FRC Driver Station.

1. Creates a Joystick object connected to USB port 1 on the DS (listed first in the Setup tab of the
DS).

2. Gets the current X axis value of the joystick and stores it in the variable "speed".

Getting started with Java

Page 26Getting started with Java Last Updated: 10-03-2019

Class, method and variable naming

Class, method and variable naming

Module ordering and numbering

Module ordering and numbering

The device number represents the instance of the module type. For example the first digital
module would be 1 and the second one would be 2. If you only had a single module of each type in
your robot and you used the short form of the constructors when creating devices (where the slot
number argument was left out and defaulted to the first module) then your code doesn’t have to
change. The library will continue to default the numbers to the first module of a given type.

Getting started with Java

Page 27Getting started with Java Last Updated: 10-03-2019

Accessing and Using the Javadocs

One of the primary sources of documentation for the WPILibJ code is the Javadoc
documentation generated from specially formatted comments embedded throughout the
code. This document will explain what it contained in these documents, how to access them
and how to connect them to NetBeans when developing code.

Overview of Javadoc
Javadoc is a tool used to generate HTML documentation from Java source code. This
documentation contains summaries of classes and methods, descriptions of parameters and
return values, information about deprecated classes and/or methods and details about hiearchy of
classes.

Finding the Javadoc

Finding the Javadoc

The Javadoc documentation for WPILibJ is installed with the FRC plugins. To locate the Javadoc,
browse to your User folder (on Windows 7 this is C:\Users*Username*), then browse to
sunspotfrcsdk/doc/javadoc. Double click on the index.html file to open it in your default
webbrowser.

Navigating the Javadoc

Navigating the Javadoc

The Javadoc HTML pages have 4 main components:

1. Package Browser - This pane is visible on all pages and allows for browsing to the page for any
of the packages in the API

Getting started with Java

Page 28Getting started with Java Last Updated: 10-03-2019

2. Class Browser - This pane is visible on all pages and allows for browsing to the page for any
class in the API

3. Nav Bar - This bar is visible at the top of every page and allows for browsing to a few main
overview pages

4. Main Display - This is the portion of the page that changes to display the appropriate
information for each level of the Javadoc

Linking the Javadoc to the Library in Netbeans

Linking the Javadoc to the Library in Netbeans

It is also possible to access the Javadoc for a particular package, class or method from Netbeans.
To do this, first the Javadoc must be linked to the library:

1. Click Window
2. Hover over Other to expand the menu
3. Select Javadoc to display the Javadoc window in the bottom pane
4. Highlight a class, method or package from WPILib
5. In the bottom pane, click the Attach Javadoc... link
6. In the dialog that appears, click Browse
7. Browse to the Javadoc folder *USER*\sunspotfrcsdk\doc\javadoc then click Add ZIP/Folder
8. Click OK.

Accessing the Javadoc from Netbeans

Accessing the Javadoc from Netbeans

There are a few ways to use the Javadoc from within Netbeans:

1. Select the desired package, class or method name, right-click and select Show Javadoc. This
will launch your default web browser and navigate to the Javadoc for the selected item.

2. Highlight the desired package, class or method name and click on the Javadoc tab in the bottom
pane (if this tab is not present you can re-add it as shown in the step above)

3. When using code completetion, hover over an item in the list and the Javadoc will be shown.

Getting started with Java

Page 29Getting started with Java Last Updated: 10-03-2019

Beyond the Basics

Getting started with Java

Page 30Getting started with Java Last Updated: 10-03-2019

Your Second Program and beyond

By now you've learned how to code and deploy your first Java program. This article highlights
additional resources as you look to add features and move beyond the basics presented so
far.

WPILib Programming
The two primary references on programming with WPILib are the WPILib Programming manual on
this site and the WPILib Javadocs installed to USER\sunspotfrcsdk\doc\javadoc\index.html. These
resources will help you learn more about the classes available in WPILib some details about their
usage.

Command Based Programming
The Command Based programming template is a way of structuring your code that helps enforce
modularity, simplify parallelism and ensure that your program is always easily extensible. To learn
more about the Command Based programming template see the Command Based Programming
Manual and the Command Based programming video series from Brad Miller.

RobotBuilder
RobotBuilder is a software tool that simplifies much of the boiler plate code of the command
based model using a graphical interface, to learn more see the RobotBuilder Manual or the Robot
Builder series of videos.

SmartDashboard
The SmartDashboard is a software tool used to view feedback from your robot on the Driver
Station computer. Additional information about the SmartDashboard can be found in the
SmartDashboard manual.

Getting started with Java

Page 31Getting started with Java Last Updated: 10-03-2019

../../7912/l/?data-resolve-url=true&data-manual-id=7912
../..//l/?data-resolve-url=true&data-manual-id=7952
../..//l/?data-resolve-url=true&data-manual-id=7952
../..//l/?data-resolve-url=true&data-manual-id=7952
../../7882/l/?data-resolve-url=true&data-manual-id=7882
../../7882/l/?data-resolve-url=true&data-manual-id=7882
../../7882/l/?data-resolve-url=true&data-manual-id=7882
../../7932/l/?data-resolve-url=true&data-manual-id=7932

Vision Processing
To learn more about vision processing for the 2013 game, see the Vision Processing manual.

Getting started with Java

Page 32Getting started with Java Last Updated: 10-03-2019

../../8731/l/?data-resolve-url=true&data-manual-id=8731

Building with a custom version of the WPILib
source code

This document details how to build your own custom version of the WPILibJ library, then use
that library to build your robot program.

Verify Necessity
Verify that you truly need to modify WPILib before beginning. Many desired changes to or
extensions of WPILib classes can be made by making a renamed copy of the class in your team
code or making a class that extends the WPI class. This approach is often preferable to modifying
WPILib as it makes it much easier to integrate any updates to the libraries.

Unzip the WPILibJ project

Unzip the WPILibJ project

You will want to base your custom WPILibJ project off the source included with the latest plugins.
Browse to the USER\sunspotfrcsdk\lib folder, then locate and unzip the wpilibj.project.zip file (Note
that the USER directory varies based on the operating system and name of the user, if necessary
you should be able to perform a search on your machine to locate the sunspotfrcsdk directory.)

Open the Project

Open the Project

Open Netbeans and select File >> Open Project. Browse to the sunspotfrcsdk\lib folder and select
the wpilib.project project, then click Open Project

Getting started with Java

Page 33Getting started with Java Last Updated: 10-03-2019

Building the Custom WPILib

Building the Custom WPILib

You now have a copy of the WPILibJ project in Netbeans. Make any code changes you would like,
then right click on the project and select Build.

Building Robot Code with Custom WPILib

Building Robot Code with Custom WPILib

1. To build Robot programs using this custom WPILibJ library, open the Netbeans options by
selecting Tools >> Options.

2. Click the Miscellaneous tab on the top ribbon,
3. Then the FRC Configuration tab on the secondary ribbon.
4. Check the box next to Use Alternate WPILibJ library and click Browse. Browse to your custom

version of the library (in sunspotfrcsdk\lib\wpilibj.project\dist\lib\wpilibj.jar if you did not move
it). then click OK.

Your robot projects will now build using your customized version of WPILibJ. If you have changes,
fixes or additions that you think would benefit the FRC community at large, please feel free to
submit them as patches via the Bug Tracker on the FIRSTForge WPILib project.

Getting started with Java

Page 34Getting started with Java Last Updated: 10-03-2019

http://firstforge.wpi.edu/sf/tracker/do/listArtifacts/projects.wpilib/tracker.wpilib_java_bugs

	Setting up the Development Environment
	Installing the Java development tools
	Installing the Java / NetBeans Cobundle (installing Java and NetBeans in one step)
	Download and install NetBeans
	Uninstalling the previous version of the plugins
	Delete the SunspotFRCSDK directory

	Installing the NetBeans plugins
	Setting the internet plugin location in NetBeans
	Adding the plugins to NetBeans

	Downloading the plugins
	Set the local path to the downloaded plugins
	Installing the downloaded plugins

	Installing the LabVIEW support components

	Configuring the NetBeans installation
	Setting the team number

	Understanding the program download process
	What you will see the first time running a Java program after re-imaging the cRIO
	Subsequent downloads of the Java program

	Creating Robot Programs
	The "Hello world" of FRC robot programming
	Create the project
	Select the project template
	Fill in the project information
	The project is created in the Projects window in NetBeans
	Reviewing the generated source file
	Setting the Main Project
	Setting the Main Project (Netbeans 7.1 and earlier)
	Setting the Main Project (Netbeans 7.2)

	Create the RobotDrive and Joystick objects
	Fill in the autonomous part of the program
	Fill in the teleop part of the program
	Inverting Motors

	Running the program on the robot
	Running the program
	Getting ready to transfer the program to the robot
	Transfering the program to the robot
	Rebooting the cRIO
	Robot program is now running

	Debugging a Robot Program
	Placing a Breakpoint
	Running the program in Debug Mode
	Wait to connect the Debugger
	Attach Debugger
	Debugger Connected
	Run to Breakpoint
	Control Program Execution
	Using NetConsole for debugging

	Java conventions for objects, methods and variables
	Creating objects that are connected to the cRIO in Java
	Creating operator interface objects in Java
	Class, method and variable naming
	Module ordering and numbering

	Accessing and Using the Javadocs
	Overview of Javadoc
	Finding the Javadoc
	Navigating the Javadoc
	Linking the Javadoc to the Library in Netbeans
	Accessing the Javadoc from Netbeans

	Beyond the Basics
	Your Second Program and beyond
	WPILib Programming
	Command Based Programming
	RobotBuilder
	SmartDashboard
	Vision Processing

	Building with a custom version of the WPILib source code
	Verify Necessity
	Unzip the WPILibJ project
	Open the Project
	Building the Custom WPILib
	Building Robot Code with Custom WPILib

