
DEBUGGING AND TESTING
ROBOT PROGRAMS

Last Updated: 01-11-2020

Table of Contents

Testing strategies ..3
How to write an easy to test robot program ..4

Using test mode ...7

Debugging and testing robot programs

Testing strategies

Debugging and testing robot programs

Page 3Debugging and testing robot programs Last Updated: 01-11-2020

How to write an easy to test robot program

The command based programming model is designed to simplify creating very easy to write
and especially easy to test robot programs. All the pieces come together when it's time to see
how your program works so that pieces developed by multiple programmers can be
integrated and tested with the main robot program.

Break up the robot into subsystems

Break up the robot into subsystems

The first step it to break the robot program into subsystems that each represent a separately
controlled mechanism on the robot. Each subsystem has methods that operate the mechanism in
some way.

Create commands for each robot behavior

Create commands for each robot behavior

Commands define the behaviors of the robot, that is the operation of the subsystems over time. A
command starts a subsystem doing something, then waits until it is finished. Upon completion, the
next command can be scheduled. It is the defining of commands for each behavior that is the key
to making it easy to test the code as you'll see in the next few sections of this lesson.

Add commands to the SmartDashboard

Add commands to the SmartDashboard

Once one more commands are developed, they can be tested by adding them to the
SmartDashboard. It's easy to add commands, simply call SmartDashboard.PutData() with the
command name that should be displayed and the command object itself.

Debugging and testing robot programs

Page 4Debugging and testing robot programs Last Updated: 01-11-2020

Test commands indivudually using the SmartDashboard

Test commands indivudually using the SmartDashboard

When a command is added to the SmartDashboard a button is created on the screen that will,
when pressed, schedule the command to run. By doing this you can easily test each command
individually to make sure it works. This is a key principle in programming, that is unit test each part
of the larger program separately, then you'll have confidence that putting the units (commands)
together into a larger program will also work.

Adding commands to the SmartDashboard using
RobotBuilder

Adding commands to the SmartDashboard using RobotBuilder

The idea of adding commands to testing pieces of your robot program individually is so useful that
a checkbox was added to RobotBuilder to automatically generate SmartDashboard buttons. Just
check the box for any command and it will automatically appear as a button that, when pressed,
will run the command.

Test commands indivudually using a joystick button

Test commands indivudually using a joystick button

In addition to testing commands using the SmartDashboard, you can also "wire" commands to
joystick buttons. This is another easy way to verify that commands work as you expect. And, in fact,
in your finished robot program, you will likely have a number of commands wired to many of the
joystick buttons as a way of controlling the robot.

In this example there is a command called ScoreATube that presumably places a scoring object
somewhere. Then there is a JoystickButton object called TubeScoringButton that has as its
command the ScoreATube command. When the button is pressed, the command will run.

Debugging and testing robot programs

Page 5Debugging and testing robot programs Last Updated: 01-11-2020

Combine simple commands into Command Groups

Combine simple commands into Command Groups

Once individual commands are working, they can be combined into Command Groups. Command
Groups are commands that each consist of a list of commands to run when scheduled. This is
where much of the power of the system comes into play. Suppose the robot needs to score an
inner tube by driving forward for some distance, spinning rollers to release the tube for 1 second,
moving a wrist joint, and backing up the robot. If there are commands for each of those
operations, the can be individually tested, then a command group just lists all the individual
commands, and the group is tied to a button. When the button is pressed, all the individual
commands in the group run sequentially. Commands can even be scheduled to run in parallel for
operations that can happen simultaneously.

Add robot status to the SmartDashboard
Often you want to see the status of the robot by displaying values on the driver station. In the past
this was handled with adding lots of print statements to the program and values poured out of the
program, usually so fast that it was hard to know what was going on. With the SmartDashboard,
you can create a display just by sending values, and they will automatically be displayed in the
graphical user interface. In fact, you can change the format of the fields to more appropriate
displays. For example, for a gyro, its heading can be displayed as a compass.

In addition display "widgets" or graphical elements can be created as standard Java code and
added to the dashboard to make custom dashboards easily by programmers. For more detail see
the section on the SmartDashboard.

Debugging and testing robot programs

Page 6Debugging and testing robot programs Last Updated: 01-11-2020

https://wpilib.screenstepslive.com/7932/l/?data-resolve=true&data-manual-id=7932

Using test mode

It is important to verify the operation of the robot before using it for a match, demonstration
or other task. So often wires can be pulled lose, circuit breakers are left out, or other issues
that might cause the robot to not operate as expected. There are a number of strategies for
testing your robot code. You might have a checklist where each subsystem is manually verified
using the operator controls. You can also test the autonomous operation this way when the
robot is off the ground can the operation can be observed.

Test mode is designed to enable programmers to have a place to put code to verify that all
systems on the robot are functioning. In each of the robot program templates there is a place
to add test code to the robot. If you use the IterativeRobot template, or use command-based
programming you can easily see the operation of all the motors and sensors through the
LiveWindow.

Enabling Test mode

Enabling Test mode

Test mode on the robot can be enabled from the Driver Station just like autonomous or teleop.
When in test mode, the test() methods run. To enable test mode in the Driver Station, select the
"Test" button and enable the robot. The test mode code will then run.

Adding Test mode code to your SimpleRobot template

Adding Test mode code to your SimpleRobot template

The SimpleRobot template is the easiest way to get started with robot programming, but it is
somewhat limited when you try to add more features to the program. To add test code to a
SimpleRobot based program add a method called test() (or Test() in C++). The test method will be
called by the SimpleRobot base class when the robot is put into test mode from the Driver Station.

Debugging and testing robot programs

Page 7Debugging and testing robot programs Last Updated: 01-11-2020

Here you can add code to automatically test sensors and motors or send LiveWindow data to the
SmartDashboard. In this Java example, we are:

1. Adding all the sensors and actuators for the robot to the LiveWindow so that they can be
displayed or manipulated

2. Calling LiveWindow.run() periodically when in test mode to cause the values to update.

Additional robot test code can be added in the test method as well. For example, you might want
to run some motors and verify that encoders are operating. Code could be easily written to slowly
turn a motor and check the encoder values. This would verify that the motor and the encoder are
both working properly.

Test mode in the SmartDashboard

Test mode in the SmartDashboard

The above sample code produces the following output when the Driver Station is put into Test
mode then enabled. YOu can operate the motors by moving the sliders and read the values of
sensors such as the wrist potentiometer.

Notice that the values are grouped by the subsystem names to group related actuators and
sensors for easy testing. The subsystem names are suppled in the AddActuator() and AddSensor()
method calls as shown in the code examples. This grouping, while not required, makes it much
easier to test one subsystem at a time and have all the values next to each other on the screen.

Using Test mode with the IterativeRobot template

Using Test mode with the IterativeRobot template

The IterativeRobot template lends itself quite nicely to testing since it will periodically call the test()
method (or Test() in C++) in your robot program. The test() method will be called with each
DriverStation update, about every 20ms, and it is a good place to do whatever testing commands
or LiveWindow updates are desired for testing. The LiveWindow updating is built into the
IterativeRobot template so there is very little that is necessary to do in the program to get
LiveWindow updates. Note: this works even if you are using the IterativeRobot template and not
doing Command-based programming.

Debugging and testing robot programs

Page 8Debugging and testing robot programs Last Updated: 01-11-2020

In this example the sensors are registered with the LiveWindow and during the testPeriodic
method, simply update all the values by calling the LiveWindow run() method. If you're program is
causing too much network traffic you can call the run method less frequently by, for example, only
calling it every 5 updates for a 100ms update rate.

PID Tuning in Test mode

PID Tuning in Test mode

Tuning PID loops is often a challenging prospect with frequent recompiles of the program to get
the correct values. When using the command based programming model, writing PID subsystems
to the robot displays and allows adjustment of PID constants with immediate feedback of the
results. See more information about PID Tuning using the SmartDashboard in this section from
the SmartDashboard manual.

Debugging and testing robot programs

Page 9Debugging and testing robot programs Last Updated: 01-11-2020

https://wpilib.screenstepslive.com/7932/l/81113?data-resolve=true&data-manual-id=7932

	Testing strategies
	How to write an easy to test robot program
	Break up the robot into subsystems
	Create commands for each robot behavior
	Add commands to the SmartDashboard
	Test commands indivudually using the SmartDashboard
	Adding commands to the SmartDashboard using RobotBuilder
	Test commands indivudually using a joystick button
	Combine simple commands into Command Groups
	Add robot status to the SmartDashboard

	Using test mode
	Enabling Test mode
	Adding Test mode code to your SimpleRobot template
	Test mode in the SmartDashboard
	Using Test mode with the IterativeRobot template
	PID Tuning in Test mode

